


TRANSACTION LEVEL MODELING WITH SYSTEMC



Transaction Level Modeling
 with SystemC
TLM Concepts and Applications 
for Embedded Systems

Edited by

FRANK GHENASSIA

STMicroelectronics, France



ISBN 10  0-387-26232-6 (HB)

ISBN 13  978-0-387-26233-4 (e-book)

Published by Springer,

P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

www.springeronline.com

Printed on acid-free paper

All Rights Reserved

© 2005 Springer 

No part of this work may be reproduced, stored in a retrieval system, or transmitted

in any form or by any means, electronic, mechanical, photocopying, microfilming, recording

or otherwise, without written permission from the Publisher, with the exception

of any material supplied specifically for the purpose of being entered

and executed on a computer system, for exclusive use by the purchaser of the work.

Printed in the Netherlands.

ISBN 10  0-387-26233-4 (e-book)

A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN 13  978-0-387-26232-1 (HB)



Contents

Foreword vii

Preface xi

Special Contribution xv

TLM: An Overview and Brief History 1

FRANK GHENASSIA AND ALAIN CLOUARD

Transaction Level Modeling 23

LAURENT MAILLET-CONTOZ AND FRANK GHENASSIA

TLM Modeling Techniques 57

LAURENT MAILLET-CONTOZ AND JEAN-PHILIPPE STRASSEN

Embedded Software Development 95

ERIC PAIRE

Functional Verification 153

THIBAUT BULTIAUX, STEPHANE GUENOT, SERGE HUSTIN,

ALEXANDRE BLAMPEY, JOSEPH BULONE, MATTHIEU MOY

Architecture Analysis and System Debugging 207

ANTOINEAA PERRIN AND GREGORY POIVRE

Design Automation 241



vi Transaction Level Modeling with SystemC

CHRISTOPHE AMERIJCKX, STEPHANE GUENOT, AMINE KERKENI, SERGE HUSTIN

Abbreviation 267

Index 269

Design Automation        241



Foreword

System-on-Chip and TLM 

A System-on-Chip (SoC) is a blend of software and silicon hardware

components intended to perform a pre-defined set of functions in order to

serve a given market. Examples are SoCs for cell phones, DVD players,

ADSL line cards or WLAN transceivers. These functions have to be

delivered to the target users as a SoC product during the right market 

window at satisfactory levels of performance and cost.

Over the past 20 years, the productivity of SoC designers has not been 

able to keep pace with Moore’s Law, which states that the silicon process 

technology allows doubling the number of transistors per chip every 18 or 24

months. Since the advent of RTL, designers and design automation

engineers have searched for the next design methodology allowing a step 

function in design productivity. 

Simply put, we believe that we have found and delivered to the industry

the next SoC design methodology breakthrough: System-C TLM. This book MM

is a vibrant testimony by the people who made it happen, giving both some

details on the search for this Holy Grail, and the many facets of the

applications of TLM.

The Search for SystemC TLM 

Raising the level of CMOS digital design abstraction from gate-level and 

schematic capture to Register-Transfer-Level (RTL) has enabled a 

fundamental breakthrough in digital circuit design in the 1980s and 1990s.

RTL’s clean separation between Boolean operations on signals, and clocks 

registering the results of these operations, was first embodied in the Verilog

language initially designed by Phil Moorby in 1985; then in VHDL with the 

initial IEEE standard approved in 1987. RTL was first thought of as a more
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efficient way to model digital designs. Soon, its wonderful formal 

characteristics allowed separating combinatorial logic optimization as 

demonstrated by MIS1, from sequential elements such as registers or latches.

In turn, complete synthesis tools emerged, as exemplified by Design

Compiler from Synopsys.

Since RTL, many attempts have been made at identifying and defining 

the ‘next’ practical level of design abstraction. Of course, algorithm

developers start out at a very abstract level, which is not tied to any

architecture decision or implementation. What missing was an intermediate

level, which would be abstract enough to allow complete system architecture 

definition while being accurate enough to allow performance analysis.

In 1999, a small motivated team of researchers from various fields at ST 

set out to design and verify a third-generation H263 video CODEC2,

architectured with several dedicated heterogeneous processors as well as

several hardware accelerators. As other SoC architects, they had to identify 

performance bottlenecks of the CODEC, while simultaneously defining and 

refining the micro-architecture of the hardware accelerators, the instruction 

set of the dedicated processors, and the embedded software performing

control tasks and handshaking with the external world. On a previous 

incarnation of the CODEC, the designers had used extensive RTL-based

verification methods, including hardware emulators, in order to verify the

embedded software running on the selected micro-architecture with 

hundreds of reference image streams. 

Every time a functional or performance issue requiring an architecture or 

micro-architecture change was encountered, a long re-design and re-

verification cycle, spanning many weeks and sometimes months, would be

necessary. 

On the other hand, for the embedded software developer working with 

the processor architect, a modification requiring a change of the instruction 

set was almost immediate: a new Instruction Set Simulator (ISS) was 

generated and the embedded software could run very rapidly on the new ISS.

The reason was that the processor was modeled in C as a functional model,

and some wrapper code that represented the interface and communication to

the processor peripherals.

During a project review the idea emerged that, using the same abstraction

level as the ISS for other SOC hardware blocks would allow a breakthrough 

1
R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang. MIS: A multiple-level logic 

optimization system. IEEE Transactions on Computer-Aided Design of Integrated Circuits and 

Systems, CAD-6 (6), Nov. 1987
2

M Harrand et al, “A single-chip CIF 30-Hz, H261, H263, and H263+ video encoder-decoder with

embedded display controller”, IEEE journal of Solid State circuits, Vol 34, No 11, Nov 1999 
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in verification time. In itself, the idea of dissociating cleanly function and 

communication was not new, but the real breakthrough came from

developing a framework for this modeling abstraction using an open and still 

evolving design modeling language: SystemC. 

Using SystemC as a vehicle to provide the Transaction Level Modeling 

(TLM) abstraction proved to be the key to the fairly fast deployment of this

methodology. There was no issue of proprietary language support by only 

one CAD vendor or university. There was also no issue of making a 

purchase decision by the design manager for yet another costly design tool. 

Eventually, with the collaboration of ARM and Cadence Design Systems, 

a full-blown proposal was made to the Open SystemC Initiative (OSCI), 

under the name PV (Programmer View) and PVT (Programmer View 

Timed). Indeed ‘Programmer View’ clearly reflects the intent of this new

abstraction level, which is to bridge the gap between the embedded software

developer and the hardware architect.

Paradigm Shift 

Not all the possible implications of sharing a single executable functional

reference across the various teams have been explored yet.  

Certainly, allowing the Algorithm, Hardware, Software and Functional 

Verification teams to rely on the same functional model is saving valuable 

time by avoiding misunderstandings due to informal or even formal paper-

based communication. 

However, we are also witnessing a real paradigm shift in the way 

software and hardware engineers work with each other. When an SD video

movie can run at the rate of 1 image/second, equivalent to 12MHz, on an 

early model of the architecture, this allows SW development to start while 

the architecture is not yet frozen. Of course, earlier interactions between the 

hardware and software teams lead to better overall SoCs. Since more and 

more, delivering a prototype to the SOC customer is on the critical path of 

the application software development by that customer, TLM-based SoC 

platforms actually allow early application software development by the end 

customer before the actual hardware architecture is even frozen.

Next, a full ecosystem of system-level IP developers, both in-house and 

from third-party vendors, needs to develop. We are taking steps in raising

the awareness level of the IP providers, so they start to include these TLM 

views as a standard part of their deliverables together with RTL models.

Beyond this, we are making fast progress within the SPIRIT consortium, 

which will allow the SoC architect to mix and match IP blocks modeled in

TLM, as system-level IP functional descriptions.

Philippe Magarshack 

Crolles, April 18th 2005 



Preface

Throughout the evolution of microelectronics industry, SoC designers

have always been struggling to improve their productivity in order to fully

exploit the growing number of transistors on a chip achievable by the silicon 

process capacity.

The answer to this challenge has always been increasing the level of 

abstraction used for the SoC implementation. From transistors to gates, and 

from gates to RTL, the design productivity has been maintained high enough 

to keep pace with and take advantage of the silicon technologies.

Unfortunately, RTL as the design entry point cannot handle the complexity 

of 500 million-transistor SoCs designed with the CMOS90 process 

technology.

Two major directions are contributing to bridge the gap between design 

productivity and process capacity: 

• Raise the level of abstraction to specify and model a SoC design.

• Adopt a different design paradigm, going from hardwired blocks to

partially or fully programmable solutions, as pioneered by Paulin et al1.

Transaction Level Modeling with SystemC presents an industry-proven 

approach to address the first direction. The proposed solution resolves 

critical system level issues encountered in designing a SoC and its associated 

embedded software. The brief history of our reaching TLM at 

STMicroelectronics is traced in Chapter 1. 

1
P. G. Paulin, C. Pilkington, M. Langevin, E. Bensoudane, and G. Nicolescu, “Parallel Programming 

Models for a Multi-Processor SoC Platform Applied to High-Speed Traffic Management,” in Proc. of 

International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS),

2004 (Best Paper Award). 
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TLM, an acronym for Transaction Level Modeling, has become an

overloaded buzzword hiding too many different abstractions and modeling

techniques. Applications of our TLM definition as described in Chapters 2

and 3, have proved to successfully tackle the following topics: 

• Productivity through a veritable hardware/software co-development 

based on virtual prototypes, as described in Chapter 4. 

• First-time Silicon Success (FTSS) achieved by using TLM as golden

reference in the functional verification flow, which also enables a system-

oriented verification, as described in Chapter 5. Ensuring the compliance of 

the SoC design with real-time constraints of the targeted application also 

contributes to FTSS, as discussed in Chapter 6. 

• Efficient workflow between the numerous teams contributing to the

development of the SoC and associated software. This is attainable by 

sharing a unique set of specification documents and models, as well as by 

keeping consistency between the various teams through platform automation

tools, as described in Chapter 7.

This book is intended for engineers and managers who face challenges of 

designing SoCs in advanced CMOS technologies, and seek for solutions to

enhance their current SoC and system level methodologies. It also serves 

engineers looking for SystemC modeling guidelines. More generally, we 

hope that this book will trigger new ideas in the research community to 

enhance design techniques based on Transaction Level Modeling.
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Chapter 1 

TLM: AN OVERVIEW AND BRIEF HISTORY 

Frank Ghenassia and Alain Clouard
STMicroelectronics, France 

Abstract: The trend of “the smaller the better” in semiconductor industry pictures a 

bright future for System-on-Chip (SoC). The full exploitation of new silicon 

capabilities, however, is limited by the tremendous SoC design complexity to

be addressed within very short project schedule. This limiting factor has

pushed the need for altering the classic SoC design flow into prominence. A 

novel SoC design flow starting from a higher abstraction level than RTL, i.e.

System-to-RTL design flow, has surfaced as a real need in advanced SoC 

design teams. After a decade of attempts to define a useful intermediate

abstraction between SoC paper specification and synthesizable RTL, the

SystemC C++ open-source class library has finally emerged as the right 

vehicle to explore the adequate level of abstraction. Transaction Level 

Modeling (TLM), a methodology based upon such abstraction, has proven 

revolutionary values in bringing software and hardware teams together using

the unique reference model; resulting in dramatic reduction of time-to-market 

and improvement of SoC design quality.  

Key words: system-on-chip; integrated circuit; SoC bottleneck; system-to-RTL design 

flow; transaction level modeling; TLM; abstraction level; SystemC; OSCI.

1. SYSTEM-ON-CHIP 

1.1 The Smaller The Better 

An electronic system is a blend of hardware and software components

intended for performing a set of functions. These functions have to be

delivered to target users at a satisfactory level of performance. 

The integrated circuit (IC) or chip is a semiconductor wafer comprising 

millions of interconnected transistors as well as passive components such as

resistors and capacitors. ICs can function as any individual or combined 

1
F. Ghenassia (ed.), Transaction Level Modeling with SystemC, 1-22.

© 2005 Springer. Printed in the Netherlands. 
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parts of an electronic system, for instance, microprocessors, memories, 

amplifiers, or oscillators. In general, ICs are classified into three categories 

according to their intended purposes: analog, digital, and mixed-signal. 

Through the tiny size of a few square millimeters, integrated circuits 

have dramatically improved the overall system performance compared to 

those circuits assembled at board level. High speed, low power consumption,

and reduced fabrication cost are among the most remarkable benefits 

brought by ICs. 

In 1965, Gordon Moore predicted that the number of transistors

incorporated in an IC would increase twofold every year. This was really an

amazing prediction proved to be more accurate than Moore had believed.

Since the past few decades, the scale of IC integration has been soaring high. 

It started from Small Scale Integration (SSI) with around 100 transistors per 

IC in 1960s, up to Very Large Scale Integration (VLSI) accommodating 

more than 10000 transistors per IC in 1980s. There is no sign that such

tendency would ever cease. In recent years, the integration scale has only 

slightly slowed down to a factor of two for every eighteen months. This very

interesting observation has later been adopted by the Semiconductor 

Industry Association (SIA) as the famous Moore’s Law to determine IC

complexity growth. 

Nowadays, ICs could hardly be removed from daily life since they are

extensively used in consumer electronic products, telecommunication, data

processing, computing, automotive merchandises, multimedia, aerospace,

industry and so forth. This invention has really made great changes in our 

modern life style. Integrated circuits are, for this reason, widely acclaimed as 

one of the most important inventions in the last century. 

The outburst of IC complexity, as predicted by Moore’s Law, is driving 

the current semiconductor industry to challenge another cutting edge 

revolution: System-on-Chip (SoC). With the capacity of integrating more and 

more transistors in a chip, the principle of “the smaller the better” seems 

steadily realistic and promising.  

System-on-Chip is the concept of conceiving and integrating distinct 

electronic components on a single chip to form an entire electronic system. 

This concept is feasible thanks to the very exceptional manufacturing 

advances that bring IC nanotechnology to fruition. 

SoC is typically used in a small yet complex consumer electronic product 

such as hand-phone or digital camera. The fundamental building blocks of 

SoC are intellectual property (IP) cores, which are reusable hardware blocks 

designed to perform a particular task of a given component. An IP core

could either be a programmable component like processor; or a hardware 

entity with fixed behavior like memory, input/output peripheral, radio- 
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frequency analog device, and timer. The different IP cores are

interconnected on a SoC by some communication structures such as shared 

buses or network-on-chip (NoC), in order to establish communication among

them. 

A very frequent practice today is to group IP cores and communication

structures on a so-called SoC platform to create an application-specific SoC 

template. Such platforms provide users with ample room for product 

differentiation at reduced design time and effort; and thus the final SoC 

product can be delivered in a timely manner to market. With the advent of 

the latest complementary metal oxide semiconductor (CMOS) technologies, 

a SoC platform comprises not only hardwired functions but also the 

embedded software. More often than not, the embedded software runs on 

multi-processors that all present on the same SoC. 

System-on-Chip has brought to mankind a new field of boundless

imagination. Through its tiny little size empowered with high performance 

as a whole system, SoC is undoubtedly a major breakthrough in the

semiconductor industry. Imagine, a blind child could probably be able to see 

the bright world again thanks to a tiny bio-electrical chip implanted in his or 

her brain; or wearing a hand-held personal computer on your wrist could be

as common as wearing a watch very soon! 

Yes, the future of the semiconductor and consumer industries relies 

heavily on SoC. When considerations are given to all the complex factors

constituting a SoC, however, plenty of challenges would simply start to 

accumulate right in front of us: “How do we manage the intricacy of SoC 

design procedures yet sustaining a satisfactory product quality?”

To better analyze this subject, the role of the classic SoC design flow

must first be identified, followed by an examination of how the current SoC 

bottlenecks have limited its performance and what could be done to tear 

these barriers down.

1.2 Classic Design Flow

The design flow is a rigorous engineering methodology or process for 

conceiving, verifying, validating, and delivering a final integrated circuit 

design to production, at a meticulously controlled level of quality.

Traditionally, digital electronic embedded systems employ the design 

flow as illustrated in Figure 1-1. Such flows set off from a general picture of 

the system specification. It then splits into two distinct paths of activities:  

1. system hardware development;  

2. system software development.  
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Figure 1-1. Classic Design Flow

Note that there is no communication at all between these two paths of 

design work. The hardware and software design can only be conducted 

separately until a prototype of the system-under-design is made available. 

To understand this classic design flow, let us begin with the hardware

path. Here, the job starts rolling from the register transfer level (RTL) code

development. This step is accomplished by creating hardware models using

hardware description language (HDL) such as VHDL or Verilog. These

models will go through functional verification in simulation to attest the 

correctness of their behavior. Subsequently, synthesis is performed to obtain

a logic netlist. The hardware design has so far gone through the front-end 

logic design steps. Once the netlist is ready, it will enter the back-end design 

steps; typically ranging from layout drawing to floorplan, place and route,

resistance and capacitance extraction, timing analysis, and all the way down 

to physical verification. Now, the hardware design is essentially a tape-out 

version readily being sent to fabrication for building a prototype of the

system. 

On the software path of the classic design flow, the system embedded 

software will be developed independently of the hardware design. Software
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engineers will just sit in their own corner and write up the software codes 

without thinking that they may need to talk to hardware engineers. Although

the coding could be started soon this way, testing the software accessing new

peripheral IPs requires mapping RTL codes on an emulator or FPGA-based

prototype system. This is a costly process involving expensive equipment. A

worse situation is waiting for the test chip from the fab in order to test it on a

prototype board. As a result, the software is always validated later than the

hardware.

Once the system prototype is available, the software will be embedded 

into the prototype to conduct system integration and validation. If any errors

are found in the hardware or software, the design process will be iterated as 

indicated in Figure 1-1. These loops might repeat until a good functioning 

system with adequate performance is attained. Finally, the design is sent to 

the fab for volume production.

During the 1990s, the so-called “co-verification” was used to jointly 

simulate the RTL hardware and embedded software [1]. However, it was 

running at the slow speed of RTL, typically hundreds of bus cycles per 

second for a complete SoC with only one or two processors and a dozen of 

mid-size peripherals. Thus, the co-verification could only run small software

codes, for instance, debugging software drivers of simple devices. Since

software applications are getting way too complex under a constantly 

shrinking time-to-market, the co-verification could not cope with the 

situation. What the SoC industry needs now is a hardware/software co-

simulation that can simulate the hardware at higher speed. 

1.3 SoC Bottlenecks 

The vigorous trend of decreasing the minimum feature size on an

increasing wafer dimension is almost a point of no return when SIA 

Roadmap traces the forecast of Moore’s Law. This exponential tendency is

pushing the contemporary SoC era to challenge its peak [2-3]. Such 

challenge can be sorted into three major bottlenecks as follows: 

• Explosive Complexity

A rather troubling dilemma is the complexity that comes along with the 

ground-breaking SoC evolution. While SoC industry struggles for its

ultimate goal of “the smaller the better”, more and more functions are 

incorporated into a system to perform increasingly sophisticated tasks.  

A typical SoC integrates many blocks including peripheral IPs, buses,

complex interconnects, multiple processors (often of different kinds), 

memory cuts, etc. There are always several master blocks on the bus or 
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interconnect, resulting in complex arbitration of communications and 

difficult estimations of bandwidth and latency. The complexity for those

SoCs under new design or planned for the next generation can easily exceed 

the complexity of current SoCs.

The tricky game of SoC design does not simply deal with the flawless 

multifaceted-team cooperation to produce a complete SoC ranging from 

design to process. The direct impact on the overall SoC performance must 

also be carefully handled throughout the whole design cycle. Rigorous

methodology must be implemented to address reliability issues of not only 

how a SoC performs, but also of how good a SoC can perform reliabilityd

issues.

Given such complexity, the reliability of SoC performance must be 

assured accordingly starting from earlier, higher, and stricter level. This is

unfortunately a very tough and time-consuming job to cope with. Not even 

the slightest error should be tolerated because that will simply snowball the 

problem with increasing correction costs as the design advances.  

The reliability reinforcement must span widely throughout the entire SoC 

design and process flow. This methodology should tackle every design and 

process level that could have an impact on the overall SoC performance, i.e.

verification, validation, integration, timing and power checking, chip testing, 

and packaging. 

An additional factor making new SoCs more difficult to design is the

type of software applications running on their processors. Consumers can 

now purchase electronic products with multiple capabilities. For example, a

modern hand-phone has to embed MP3 player, radio, PDA functionalities, 

and digital camera in addition to its basic functions of handling incoming

voice or video calls. 

The architecture study using standard methods such as spreadsheet 

formulas or point simulations (with critical software benchmarks running on

RTL model of limited hardware), can result in over-dimensioned buses, 

processors, memories, etc, due to margins introduced by uncertainties. 

Sadly, the over-dimensioned SoC architecture will only lead to a non-

competitive silicon area. The architect requires a fast yet accurate simulation 

of the complex SoC running the real application software (at least a

significant part of it).

The current SoC design can no longer survive on the traditional design 

flow considering all the complexity factors. Instead of the classical approach 

where separate teams work on various incoherent models, what the SoC 

design really needs now is an expanded space that links all the different 

phases of the design through a centralized methodology. 
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• Time-to-Market Pressure

Time-to-market is the amount of time required for conceiving an idea 

into a real product for sales. Every product has a market window. If time-to-

market is shortened, the product will be available earlier in the market for 

gaining larger market share and earning higher revenue. For certain markets,

the first product still occupies about 60% of the market share even after the 

competitors have offered the alternative products. 

Today, the fast-moving market does not allow superfluous time loss in 

product development and production; you may otherwise pay the dear price

of missing the market window. A typical example is delivering consumer 

products by a particular date of some special festivals. 

The increasing complexity of current SoC products usually necessitates 

time-consuming development phases. This has critically hindered the

attempt to shrink the time-to-market of SoC products. The classic design

flow is unfortunately of little help in this case because it is always too long 

to wait for a prototype. Instead, a more flexible and efficient methodology is

sought after to optimize the time management of SoC projects.  

• Sky-rocketing Cost 

The ever-increasing cost of SoC development and production, close to an

unacceptable level lately, is probably one of the most nerve-racking worries 

of SoC industry. Since the current SoC design necessitates higher workforce

and much costly masks, re-spins due to errors in design functionality or 

performance are not tolerated, i.e. first-time system success is critical. 

Due to the tremendous complexity of the current SoC products, a larger 

workforce must be provided to manage tricky problems encountered in 

design, verification, and manufacturing. In parallel with the growing 

complexity, Electronic Design Automation (EDA) tools intended for 

designing and verification are getting much more expensive. On top of it, the

hottest spotlight of SoC production -nanotechnology- has dramatically raised 

the costs of manufacturing equipment and facility greater than ever.  

Here again the dilemma: “How could SoC industry sustain this 

unreasonable cost burden while trying to keep up with the projection of 

Moore’s Law?”  

Not surprisingly, the traditional design flow cannot do much good in

solving this problem. Some of the semiconductor foundries start to form 

alliances to share the production cost based on the same manufacturing

technology. More fundamentally, revolutionary methodology approaches to

design and verification should be phased in to strike at the roots of cost 

issues.
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2. SYSTEM-TO-RTL DESIGN FLOW  

2.1 The Need for a Novel Design Flow 

SoC bottlenecks have propelled the whole SoC industry to ponder on its 

future seriously. Countless discussions and researches have been going on

since years to hunt for the most favorable solution.  

IP reuse is one of the important research directions. Nonetheless, it has

some drawbacks. The time spent to identify, understand, select, and integrate 

a third-party IP places this approach at an unfavorable position compared to

designing it in-house. The situation could be worse if the IP provider does

not react promptly for any integration issues encountered.  

Another prevailing direction pursued is raising the design abstraction

above the register transfer level (RTL), an approach generally known as

system level design. This approach adds an extension of system-to-RTL

design flow on top of the standard RTL-to-layout design flow so that the 

entry point of SoC design resides at higher abstraction level than RTL. 

Many good reasons make it convincing to extend the classic design flow

to system level. First of all, think over the importance of shortening time-to-

market of SoC products. Due to the explosive complexity, the software must 

provide a considerable part of the expected SoC functions to alleviate

lengthy hardware design process. It grants flexibility for product evolutions

either during the design with evolving standards, or during the deployment 

with field upgrades. For example, downloadable video CODEC update or 

user-selected applications download for hand-phone games. Strategically, 

the system-to-RTL design flow enables developing and testing the software

earlier to accelerate the SoC design cycle.  

Second, it is believed that system level design has promising potential to

well perform architecture analysis and functional verification. These are 

crucial issues in SoC development today. Analyzing the expected real-time 

behavior of a defined SoC architecture could be very critical since real-time 

requirements are key specification parameters for many SoC targeted 

application domains, for instance, telecommunication, multimedia, or 

automotive. System level simulation and analysis is the right initial flow step

to handle the difficult issue of not over-dimensioning the SoC hardware

architecture that runs dynamic application software. 

The third reason of extending the design flow to system level is for 

hardware design verification, which accounts for about 50 to 70% of SoC

project effort. Good SoC design flows should support efficient verification 

processes for attesting SoC functional behavior and performance resulting 

from system integration of IPs. Efficient verifications reduce not only SoC 

development time but also the risk of the dreadful silicon re-spin. 
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2.2 Brief History of Our Reaching TLM 

Any design and verification flow requires some defined abstraction level 

for models on which the flow tools can operate. To start SoC architecture,

design, and verification from a higher level than RTL, the right type of 

abstracted modeling must be identified to support system design activities

for both hardware and software engineers. Bear in mind that having more

model views means involving higher development cost and complex 

management for the coherence among the different views. 

2.2.1 Efforts on Cycle-Accurate Modeling

In late 1990s, many large companies started to develop their own models

while research institutes and EDA start-ups were proposing a variety of 

modeling languages. Among the proposed languages, some of them were 

built from scratch. Some were “extended subsets” of the existing general-

purpose software programming languages especially those of object-oriented 

languages such as C++ or Java. The examples include SpecC [4], CowareC,

and VCC classes. Other proposed languages were extensions of hardware

HDLs such as VHDL or Verilog. A typical example is Superlog. ICL had an

interesting multi-level modeling approach for systems but we were not 

seeing them an as an EDA tool supplier.

As a central system flow team, we developed different kinds of models

for various SoC projects using several of these languages. The models were

developed at various abstraction levels depending on the requests from 

various SoC design teams in the company. The initial requests were to have

cycle-accurate C or C++ models from certain who believed that it was the

right way to get simulations running at least one order of magnitude faster 

than RTL models in VHDL or Verilog. It soon became obvious that cycle-

accurate modeling had several drawbacks.

First, the modeling effort was close to the one of creating synthesizable 

RTL models. It was due to fact that the model complexity was too close to 

RTL. The only gain was that such models had no synthesis-related 

constraints. In addition, the RTL was still the reference due to immature

synthesis tools. It led to iterations of the C++ model trying to keep in line

with the RTL model of the IP under design. Introducing any specification 

change in the C++ model during the design was almost as long as doing so

in the RTL model. The cycle-accurate modeling was actually leading to high

costs. These models were not available to architects and were ready for 

software developers a little too late. Second, the simulation speed for a SoC 

model was ten times below the original objective. It was simulating at a few 
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kHz compared to the several hundreds of Hz for RTL. Third, using specific

languages or modeling optimizations to gain speed was actually locking the 

modeling team into a specific simulator supplier. Fourth, during final RTL

updates before tape-out, it was usually not possible to keep updating the

cycle-accurate C++ model due to tight schedule. Thus, the cycle-accurate 

model was not fully consistent with the reference RTL at tape-out. 

Normally, modeling engineers would be allocated to another project once 

the SoC was taped-out. The model would not be usable as a starting point for 

its next generation design because it was not consistent with the existing

RTL and original modeling engineers were unavailable. 

For all these reasons, we were looking for an higher level of abstraction 

that would allow much quicker modeling than cycle-accuracy, yet be precise

and fast enough for software developers to test the real embedded software 

using a standard language enabling reuse of models with a variety of 

simulator suppliers. Ideally, such models should also be usable for 

performance estimations with enough precision for SoC architects to make

decisions.

2.2.2 Our Road to SystemC-based TLM 

In 1999, two of our suppliers, Coware and Synopsys, came to us with a 

proposal to support the standardization of a C++ set of classes for hardware

modeling. This proposal was made with an open-source reference simulator 

that was to be completed by commercial refined features, commercial 

simulators, and other system tools for architects. We considered this 

initiative as the first real step addressing the need for system language

standardization and the model reuse across various tools from a future 

market of EDA system tool suppliers. Hence, we decided company-wide to 

support SystemC as the language to be used as the basis for our efforts of 

defining an appropriate system modeling methodology.

SystemC 0.9 included RTL constructs but also some initial channel

concepts that could be analyzed as the right direction for more abstract

modeling than RTL. However, SystemC 1.0 was lacking of such high-level 

channels and was totally targeting RTL, i.e. cycle-accurate type of modeling, 

as we had already practiced with other languages.  

We made serious moves for the SystemC issue. At OSCI SystemC

steering group meeting, Alain Clouard presented requests for more abstract 

concepts, in particular to support modeling driven by system specification 

events but not design implementation clocks. SystemC 2.0 was then

specified by OSCI language working group with system-level constructs

such as new channels as well as inputs from colleagues especially Marcello



TLM: An Overview and Brief History 11

Coppola, from an earlier STMicroelectronics C++ modeling library named

IPsim.  

For the rest of 2000, we continued to work in parallel on more abstract 

modeling than RTL using other languages enabling such methodology.

Using Cadence VCC, Giorgio Mastrorocco upgraded a Parades model [5] of 

a dual processor SoC of STMicroelectronics. Our team, in partnership with 

Cadence, compared its performance estimates precision against RTL [6]

(which received best paper award of DATE’2002 Industry Forum).  

We further refined our plan according to our requirements, for instance, a

simulator for cycle-less models based on SoC specification events and

managing time without cycles for fast simulation. Although lighter to code 

than RTL, transaction level modeling would require an initial investment in

creating a library of commodity IP models. This was essential to adopt TLM 

as a methodology. It was also clear that SoC models with multiple masters

on the interconnect would need to really execute read/write transactions

from the RTL and change values in memories and peripheral registers. A 

performance model was simply too complex to build for an architect-only

usage, and could not be used by software engineers to perform functional

testing of their embedded software. 

The real proof of modeling efficiency at transaction level came early

2001 when, using Unix IPCs, Etienne Lantreibecq and Laurent Maillet-

Contoz enhanced a high-level C behavioral model from Joseph Bulone and 

Jose Sanches of an ST H263 video CODEC multiprocessor macro cell, to 

create a speed-efficient, bit-accurate, cycle-less, concurrent multi-IP 

modeling of the macro cell in only a few weeks. The model was running 

orders of magnitude faster than RTL, and updated before the RTL update for 

MPEG4; hence allowed to develop concurrently and efficiently the

embedded firmware, dimension the code memories sizes, and sign-off the 

architecture with granted competitive silicon area for MPEG4 macro cell. 

Once SystemC 2.0 appeared as early release on July 13th 2001, we

immediately started to evaluate higher-level features of the language, e.g.

new channels, events, and achievable simulation speed, by creating simple 

transaction level models with the key SoC architectural concepts. Jean-

Philippe Strassen, with the experience from earlier efforts described above,

developed a first SystemC 2.0 model of SoC showing implementation of 

TLM abstractions for the main components of an SoC: bus model including 

address management, bus master (one or multiple instances) creating 

read/write transfers, memory, timer, and interrupt controller with a thread in 

the bus master handling the interrupts. Our initial SystemC 2.0 TLM

platform simulation without any optimization was around thousand times 

faster than the equivalent RTL or cycle-accurate C models simulations.  
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Combining the facts that the IP modeling effort was much less than the one 

required for modeling at bus cycle-accurate (BCA) or RTL level, and that 

the simulation speed was fast enough, we decided to continue the

investigation of SystemC-based transaction level modeling.

We implemented the canonical SoC platform in various flavors of 

modeling on top of SystemC 2.0, such as bidirectional TLM transport()1

call or unidirectional transfers such as put and get calls [7]. Models were 

30% slower with the put/get approach compared to the transport approach in 

simulations on the RISC workstations. This made a real difference with 

respect to the speed-up that we were targeting for TLM. Therefore, we

decided to adopt the bidirectional approach for our methodology, i.e. 

transport().

To compare SystemC 2.0 relevance for TLM modeling effort and 

simulation speed, we also implemented the same canonical simple SoC in

other languages including Unix IPCs scheme of the H263 work.

Among them, SystemC was the most flexible approach for modeling 

inter-IP communications and synchronization. It enabled exploiting the

speed of C/C++ models for the internal behavior, which represented the 

majority of the simulation time expense for a real SOC, compared to

communications and synchronizations. Further, SystemC was the only

proposal for standardization with tool roadmaps from commercial vendors, 

and an open-source simulator facilitating the adoption of the new TLM

abstract view.  

Our canonical simple SoC TLM platform was a key demonstrator for all 

the optimizations in our TLM base classes for improved methodology and 

faster simulation speed. The H263/MPEG4 CODEC TLM model was 

running at a similar speed compared to running the RTL model of the same

design on the most costly emulator: 2.5 seconds for coding and decoding an

MPEG4 image. The VHDL RTL simulation was taking one hour. The TLM 

methodology was presented at FDL (Forum of Design Languages) by Frank 

Ghenassia in Marseille, France. 

In 2001, our team reached several milestones through SystemC

simulation. We worked with Cadence on the joint specification describing

how our SystemC model could work with the VHDL model of another IP as

mixed-language simulation, which was then implemented as prototype

simulator by Cadence. 

By Mid 2002, we had developed about twenty TLM IP models used as 

main subset of SoCs. The first session of our 5-day SystemC and TLM 

training was held for STMicroelectronics engineers. In 2002, we obtained 

1  Included in 2005 OSCI TLM standard.
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the first benefit of SystemC TLM models for STMicroelectronics products. 

Kshitiz Jain and Rohit Jindal developed a SoC TLM model, enabling a four-

month gain for one of our divisions starting embedded software development 

earlier than the availability of RTL on FPGA fast prototyping system. It

yielded an embedded boot loader software fully functional and unchanged 

when run first time on RTL. We progressed steadily on optimizations for 

TLM simulation speed with contributions from Pierre Paulin, Chuck 

Pilkington and colleagues from STMicroelectronics Ottawa [8]. Our team

was also progressing towards the idea of standardizing TLM both internal of 

STMicroelectronics and in OSCI. Meanwhile, others were also getting the

benefits of TLM modeling using SystemC, e.g. the OCP-IP regarding the

abstraction levels [9].

It was important to have hardware teams to use TLM. Towards end of 

2002, we successfully beta-tested Cadence mixed-language SystemC/HDL 

simulator after the joint 2001 prototype of STMicroelectronics and Cadence 

was made. Based on Antoine Perrin and Rohit Jindal work, we demonstrated

our canonical SoC platform running half of the models in VHDL RTL and 

half in SystemC TLM to ST divisions.  

Since early 2003, TLM was widely deployed in STMicroelectronics not 

only for software development but also as reference models in functional 

verification for RTL IPs. We started to see cross-functional teams 

exchanging IP models, breaking the wall between hardware and software 

engineers, and spotting issues in paper specifications and inconsistencies 

between parallel development of software and RTL. Divisions observed

gains in simplicity of environment setup and simulation speed of SystemC

models in their functional verification test bench compared to their earlier 

approaches. In 2004, we reached several hundreds kHz execution of a SoC

half on workstation TLM simulation and half on an FPGA board (much less

costly than an emulator), thanks to our synthesizable STBus adaptors

between TLM and RTL developed by Mukesh Chopra and colleagues, and 

based on the SCE-MI standard for transaction-based co-emulation [10].  

On the speed side, Serge Hustin and colleagues further demonstrated in

2003 the power of TLM, leveraging their own methodology experience on

abstract system models, by creating in a few weeks a SoC simulation of the 

core of a modem that was simulating on a workstation at a third of the speed 

of the actual chip. 

After two years working on TLM modeling, we were invited to 

contribute a chapter for SystemC methodologies and application [11] in

2003. In the same year, TLM was standardized in the STMicroelectronics 

hardware design rules standard manual, the BlueBook. Meanwhile, we

proposed together with Cadence and ARM a foundation proposal to OSCI

for the new OSCI TLM working group. With this OSCI TLM WG that 
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involved more companies, e.g. Philips and Mentor Graphics, the board of the

Open SystemC Initiative approved the TLM standard on April 21st 2005.

The deployment of SystemC TLM for functional testing of embedded 

software and hardware RTL entails using TLM IP models in SoC 

integration. Some algorithm teams also use TLM as a way to structure their 

algorithm developments and make them readily usable for other teams. We

have noticed that architects who are typical senior experts with both HDL

and C++ knowledge have yet to exploit TLM benefits for their architecture

studies. However, advances described later in this chapter about TLM 

modeling with time annotations (timed TLM or PVT), RTOS emulation with 

native compilation scheduling on top of TLM platforms, further usage of 

TLM before hardware/software partitioning, and model transformation 

techniques from standard specifications such as UML, are all helping to get 

TLM profitable for SoC architects. The remainder of the chapter introduces

the main concepts and the next advanced usages of TLM that make it a

powerful abstraction for SoC projects.

3. TRANSACTION LEVEL MODELING 

Through experiences and results gained from our tireless research and 

development, we propose a bit-true, address-map accurate, cycle-less

Transaction Level Modeling (TLM) based on events from the

hardware/software system specification as a sound solution to system level 

design.

TLM is a transaction-based modeling approach founded on high-level 

programming languages such as SystemC. It highlights the concept of 

separating communication from computation within a system. 

In TLM notion, components are modeled as modules with a set of 

concurrent processes that calculate and represent their behavior. These

modules exchange communication in the form of transactions through an

abstract channel. TLM interfaces are implemented within channels to 

encapsulate communication protocols. To establish communication, a

process simply needs to access these interfaces through module ports.

Essentially, the interface is the very part separating communication from

computation within a TLM system. 

TLM defines a transaction as the data transfer (i.e. communication) or 

synchronization between two modules at an instant (i.e. SoC event)

determined by the hardware/software system specification It could be any

structure of word or bit, for example, half-word transfers between two 
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peripheral registers or full image transfers between two memory buffers. The 

definition of transaction can be refined as a structure that is bus-protocol

aware, i.e. it may include information as bus width or burst capability. Such 

refinement could be very helpful for SoC architects who perform fine 

analysis of arbitrations in SoC interconnection. 

TLM proves itself a reliable methodology to wrestle with the clogging 

SoC bottlenecks. Throughout the SoC design cycle, it serves as the unique

reference across different teams for three strategic activities: 

• early software development; 

• architecture analysis;

• functional verification. 

In the perspective of durable progress, TLM leads SoC developers to a

number of benefits towards productivity and time-to-market breakthrough.

Not only work consistency is assured across different teams through the 

unique reference of TLM, modeling efforts are also vastly rationalized.

Naturally, TLM will induce both cost- and time-efficient SoC project 

management in the long run. Last but not least, TLM indirectly encourages 

personnel interaction through cross-team communication. Our approach

combines clock-less and yet bit-true and address-true, resulting in a single

transaction level modeling that enables multi-disciplinary teams joint work 

for SoC hardware/software design and verification project.

3.1 Overview of the Novel Design Flow 

The novel SoC design flow comprises two parts: standard RTL-to-layout 

flow plus system-to-RTL extension. Figure 1-2 presents this newborn flow

with the position of TLM clearly indicated.  

Referring to the same figure, a given SoC project generally starts from

customer specification where system requirements are well identified. These 

preliminary requirements are then written as paper specification. Based on 

the specification, system architects perform hardware/software partitioning 

for configuring optimal system architecture.  

TLM finds its place right after HW/SW partitioning. Once the TLM

platform is completed, the flow enters the concurrent hardware/software

engineering phase. In this phase, the TLM platform serves as the unique

reference for software and architecture teams to conduct early software 

development and coarse-grain architecture analysis respectively. It also 

serves the verification team to develop the verification environment and its

associated tests so as to verify the RTL platform once it becomes available. 
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Meanwhile, hardware designers develop RTL design of the system that 

produces a SoC RTL platform. As a result, a veritable hardware/software co-

design is attained. The HW/SW co-design is one of the most remarkable

differences between the novel and classic SoC design flow.  

Figure 1-2. Novel SoC Design Flow 

Once the RTL platform is available, various tasks could be conducted 

such as verifying its compliance with the intended performance, hardware

verification, and low-level software integration with the hardware. These 

tasks perform concurrently with emulation setup, synthesis, and back-end 

implementation. The well-verified hardware design will then be taped-out 

for test chip fabrication. As the first test chip is ready, software design such

as device drivers, firmware, or simplified applications will have also been 

verified with good level of confidence. Since both hardware and software

designs are thoroughly verified, the novel SoC design flow will certainly 

increase the probability to achieve first-time silicon success. 

3.2 Triple Abstraction 

Our new design flow defines a structure of triple abstraction as follows: 

1. SoC Functional View; 
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2. SoC Architecture View; 

3. SoC Micro-architecture View.

The three views have complementary objectives to balance the need for 

both high simulation speed and accuracy. The triple abstraction can be

integrated gracefully into the SoC design cycle without creating any conflict. 

• SoC Functional View

Being the highest abstraction in the flow, SoC functional view abstracts

the expected behavior of a given system in the way that users would 

perceive. It is an executable specification of the system function composed 

of algorithmic software. SoC functional view is developed without 

considering the implementation details at all, i.e. it contains neither 

architecture nor address mapping information. Performance figures are 

usually specified separately as paper specification. 

• SoC Architecture View

Further down in the flow is SoC architecture view where TLM platform

is conceived. This view captures all the necessary information to develop the

associated software of a given SoC. Thus, hardware-dependent software can 

be developed and validated based on this abstract view long before it can be 

executed on a SoC physical prototype. 

During the early design phase, this view also serves system architects as

a useful means to obtain quantitative figures in determining optimal

architecture that will best fit the customer requirements.  

Another interesting point about SoC architecture view is its role of 

providing a reference model for verification engineers. Such reference is 

indeed the “golden model” for verification engineers to generate functional 

verification tests that will be applied on implementation models. These 

verification tests help to verify whether the system-under-design functions 

are in accordance with its expected behavior. 

• SoC Micro-architecture View 

The lowest level of the triple abstraction is SoC micro-architecture view.

This abstract view captures all the required information to perform timed 

and cycle-accurate simulations. The prevalent modeling practice for this

view is coding at register transfer level with hardware description language

such as VHDL or Verilog. These models are very often made available since 

they are the most common input for logic synthesis to date.

SoC micro-architectural view is engaged in two key missions. First, it 

debugs and validates low-level embedded software in the real hardware 

simulation environment. The goal is to debug and integrate device drivers

into the target operating system before the first test chip, or even before the

hardware emulator is accessible. Second, this view helps greatly in SoC 
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micro-architecture validation. System embedded software is normally 

optimized with the hardware being configured accordingly in order to

sustain real-time requirements of an application. In case of insufficient 

performance, SoC architecture could be upgraded to match these

requirements by using RTL views for any part requiring cycle accuracy.  

[1] gives a good illustration of the activities based on SoC micro-

architecture view and [12] describes a way to use multi-level models in a 

refinement flow.

3.3 Advanced Usage of TLM 

SystemC TLM has so far been deployed for functional testing of 

embedded software and hardware RTL, as well as for hardware architecture

studies. Certain algorithm teams use TLM APIs to structure their algorithms

developments and make them readily usable by other teams of the SOC

project such as functional verification engineers.

Architects will soon benefit from several advances in TLM needed for 

their work. Some of these advanced features enable further TLM

deployment in software development teams. In addition, they contribute to 

drastic improvements in the way that the SoC integrator (semiconductor 

company) and its customer (system company) can cooperate for efficient 

definition of next generation SoCs.

A first step is the automated assembly of TLM, RTL, and mixed top-

level SoC netlists from libraries of IP views described in SPIRIT XML 

standard format. This minimizes significantly the effort in assembling SoC

simulations for architects, designers, functional verification engineers, and 

embedded software developers.

Using TLM not only for functional simulation but also for estimations of 

SoC performance, is progressing based on advances in adequate structuring

of additional time-oriented wrappers around existing TLM models: the PVT 

models [7]. PVT modeling enables the architect to perform initial estimates 

right in the beginning of the project, without RTL or cycle-accurate IP 

models, even with rough functionality or algorithms coming from earlier 

studies. The precision of estimates can be increased anytime along the SoC

project according to the needs and the updates from on-going hardware and 

software design. Early estimations of power consumption enabled by real 

software running on TLM model of SoC before RTL is available to further 

assist the architect. TLM thus facilitates the development of power-aware

SoC software ahead of the hardware. Moreover, using TLM with place and 

route tools early in the SoC project could help in closing back-end tasks in a 

timely manner. Alternatively or in a complement way to address the P&R 

issues of large new SoCs, the Globally Asynchronous Locally Synchronous
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(GALS) architecture is a natural fit for TLM modeling in all design and 

verification steps as demonstrated in a real taped-out GALS SoC [13].

Another key improvement is the ability to perform multi-tasking or 

multi-threaded embedded software architecture analysis on the envisaged 

SoC (single or multiple-processor). SystemC 2.0 has a non-preemptive 

scheduler that forbids a direct use of SystemC threads to model software 

tasks. This scheduler has other interesting properties for hardware design

such as repeatability. One could however use a processor ISS linked to the

SystemC simulation to run multi-tasking embedded software; but the ISS

speed would very likely prevent any large pieces of software or data-

intensive software (e.g. video processing) from running. Another approach is 

the socket connection between the SystemC simulator and tasks of the

embedded software running natively compiled for the workstation and 

executing without ISS. Nevertheless, the socket connection and the

workstation process or thread switching limit the speed. On top of it, the 

embedded software must be written according to certain guidelines. 

There are two solutions. First, modify SystemC kernel, which may not be

currently suitable to run existing hardware models with a range of 

commercial simulators that support existing OSCI SystemC semantics.

Second, develop a scheme with special C++ wrapper enabling native 

compilation of unchanged multi-tasking embedded software (typically C)

and fast execution in a linked SystemC 2.1 standard simulation. Advances in

the last option are promising: multi-tasking software of several hundred 

thousands of C source code lines can be ported on TLM SoC simulation in 

one and a half day executing in the mega-Hertz range of simulation speed. 

Regarding the equivalence of functionality between TLM and RTL

models of SoCs, advances are being made in the areas of automatic 

comparison of TLM and RTL simulations despite their drastic difference in

abstraction levels. The formal proof of TLM models is an on-going research

topic that provides encouraging initial results. 

The next area is the specification-to-TLM flow for hardware/software co-

design, before and after hardware/software partitioning. Before partitioning,

the OSCI TLM standard could be used to create a point-to-point, address-

less functional yet concurrent SystemC model, reusing IP behaviors of the C 

code from application algorithm engineers. Tools should use this model in 

conjunction with hardware/software partitioning hypothesis, along with IP 

interfaces such as registers and the sub-system address-map information

formalized in standard SPIRIT XML format [14]. The latter automatically 

wraps the C behavior in the address-mapped TLM model of hardware as 

described in earlier section, which is useful for running the embedded 

software by software and functional verification engineers. 
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Such model transformation may benefit from Model Driven Architecture 

(MDA) techniques, exploiting more formal specification capture than usual 

text thanks to notations like UML completed with suitable semantics

extensions. A formalized initial specification above TLM will also benefit 

the formal verification of the SoC hardware and software design all the way

from the refinement or generation design flow down to TLM, then RTL and

constraint-driven generation of real-time embedded software. 

In addition, new SoC architectures will provide further opportunities to 

profit from TLM models capabilities. Given the variety and complexity of 

fast evolving applications requirements along with sky-rocketing costs of 

design, verification, and mask production of nanometer SoCs, trends for new 

high-end SoCs are having more functionalities in a number of processors

with the embedded software rather than dedicated hardware. This is also due 

to costs of programmable logic for raw processing, network-on-chip

configuration,  and coprocessor extensions. 

Some intelligent load-balancing scheme will also be required [8, 15]. The

optimal SoC hardware/software architecture for a given range of 

applications (i.e. an application domain) cannot be studied for sure using 

traditional combination of spreadsheet, some existing RTL, and ad-hoc

partial models in C++. A complete modeling and simulation scheme with 

relevant analysis tools is needed, which is the exactly the sweet spot of 

SystemC TLM. The computing power will certainly exceed the one

available on a single workstation. Thus, we have worked for parallelizing the

SystemC simulation kernel to run large models of networked SoCs 

comprising multiple processors and complex hardware blocks. Such 

simulations can run on symmetric multiprocessor servers (SMP). Depending 

on the mapping efficiency of the SoC functionalities on the simulation 

computers, it could also run on a clustered Non-Uniform Memory 

Architecture (NUMA) configuration for supercomputing. Save and restore 

features in upcoming SystemC simulators will also help next-generation 

large-scale SoCs to simulate in an acceptable duration, e.g. software 

developers can debug a specific corner case that happens after million 

equivalent cycles. 

The final breakthrough that will finish establishing TLM as the entry 

point of the SoC design flow is obviously automatic generation of 

synthesizable RTL from TLM models. This is a visible progress seen in next 

commercial tools offers. The OSCI standard of SystemC TLM modeling and 

the OSCI SystemC RTL synthesizable subset specification are also 

contributing to make this happen. Formalized initial specifications, e.g. in

UML complemented with suitable semantics, down to TLM then RTL will

be needed to reach the ultimate goal of affordable automated formal design 

and verification of SoCs. TLM acts as the intermediate pillar that reduces the 
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Specification-to-RTL gap into two smaller manageable gaps: Specification-

to-TLM and TLM-to-RTL and embedded software. 

One could envision a world full of networked, field-configurable

heterogeneous multi-processor NOC-based SoCs with some FPGA areas

suitably sized and located for a given range of applications. Such SoCs will

be able to offer hardware and software functionalities downloaded from the

Internet on demand by end-users, for instance, in multimedia mobile

(communicating PDAs/games/video consoles) or embedded home and car 

equipments. A reliable performance service can still be assured after the

download of additional new hardware/software applications in the device 

thanks to online architecture constraints TLM-based fast analysis (with

automatically generated TLM/RTL and TLM/software adaptors), and 

downloadable configurations optimized for user-selectable trade-offs of 

performance, security, and power consumption.
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Chapter 2 

TRANSACTION LEVEL MODELING 
An Abstraction Beyond RTL 

Laurent Maillet-Contoz and Frank Ghenassia
STMicroelectronics, France

Abstract: Transaction level modeling (TLM) is put forward as a promising solution 

above Register Transfer Level (RTL) in the SoC design flow. This chapter 

formalizes TLM abstractions to offer untimed and timed models to tackle SoC 

design activities ranging from early software development to architecture 

analysis and functional verification. The most rewarding benefit of TLM is the

veritable hardware/software co-design founded on a unique reference, 

culminating in reduced time-to-market and comprehensive cross-team design 

methodology. 

Key words: transaction; untimed model; timed model; initiator; target; channel; port; 

concurrent processes; timing accuracy; data granularity; model of 

computation; system synchronization; functional delay; annotated model; 

standalone timed model. 

1. THE REVOLUTION 

1.1 Call for Raising Abstraction Level 

Squeezed by the ever-increasing SoC design complexity, cost, and time-

to-market stress, the much-perturbed SoC industry is longing for a solution.

The key to this solution is to improve the design productivity through a more 

reliable design methodology within a shorter design time-frame. 

Forwarding critical software development earlier in the SoC design flow

is unquestionably helpful to reduce the design cycle time. Such advance

implies indeed a hardware/software co-design wherein the software is 

developed in parallel with the hardware for earlier system integration.

To cope with the rising SoC complexity, a much more rigorous

methodology is sought after to assure the reliability of SoC performance at 
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an earlier stage of the design cycle. A favorable approach is the architecture

exploration that analyzes the potential effect of the realistic traffic performed

by a system. 

Pulling all these factors together, raising the level of abstraction above

RTL in the overall SoC design and verification flow has appeared to be a 

promising solution for the SoC industry.  

1.2 Attempts at Raising Abstraction Level 

Bear in mind that any attempt made to raise the abstraction level is

always a game of balancing the trade-off between the speed and accuracy of 

a potential simulation model. Our development effort has of course

witnessed this game from tip to toe. Before tackling the subject of 

abstraction level, it is worth considering what the two extreme ends of the 

SoC design flow could offer. 

First, consider the algorithmic model at the highest end of the flow. A 

complex design usually begins with the development of such a functional

model. As an example, a digital signal processing oriented design will have a 

dataflow simulation engine as its algorithmic model. Since it only captures 

the algorithm regardless of the implementation details, an algorithmic model

has a huge advantage in its high simulation speed. In spite of this, an

algorithmic model has no notion of hardware or software component; it 

models neither registers nor system synchronizations related to SoC 

architecture. This model therefore cannot fulfill the need of executing the

embedded software. 

On the other end of the design flow, a pure logic simulation can take

place at the register transfer level (RTL). In a conventional SoC logic 

simulation, RTL models written in hardware description language (HDL)

such as VHDL and Verilog are employed as the system hardware. If a 

processor model is necessary, a design sign-off model (DSM) will typically

be used. The advantage of the logic simulation is evidently its great fidelity 

to the real implementation, i.e. accurate SoC functional and performance 

analysis. This is nonetheless a price too expensive to pay in terms of the

lengthy simulation time. The time consumption has actually further 

worsened lately due to the high SoC complexity that requires a longer RTL

development phase. Moreover, a pure logic simulation cannot execute any

software in a reasonable amount of time. A system can only integrate its 

associated software for observation and analysis rather late in the design 

flow. Since the breadboard is usually almost ready at this point, any system

modification will certainly be too costly at this stage. 
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In brief, an in-between solution has to be resolved for which three 

fundamental criteria must always be respected as the doorway to early

software development and architecture exploration: 

1. Speed. The potential model must simulate millions of cycles within a

reasonable time length. The target activities frequently involve a very 

large scale of simulation cycles. Some of them may entail user 

interactions that could probably slow down the process. It is unacceptable

and unaffordable to wait for even just a day to complete a simulation run. 

2. Accuracy. Although speed is an interesting advantage to enhance, the 

potential model should sustain a certain degree of accuracy to deliver 

reliable simulation results. Some of the analyses may require full-cycle 

accuracy to obtain adequate outcomes. As a rule of thumb, the potential

model should at least be detailed enough to run the related embedded

software.

3. Lightweight Modeling. Any other modeling effort in addition to the

compulsory RTL modeling for hardware synthesis must be kept 

insubstantial to optimize the overall SoC project cost. The potential

model should be, for this reason, a quick-to-develop model at a 

considerably low effort.

Collected here are some attempts to raising the abstraction level. Brief 

descriptions are provided for these attempts, including hardware/software

co-verification, cycle-accurate model, and temporal model. 

• Hardware/Software Co-Verification

The concept of hardware/software co-verification is suggested for 

reducing the critical SoC design time and cost to overcome the limitation of 

pure logic simulations. The underlying idea of this concept aims at leading

hardware/software integration, verification, and debugging to an early phase 

of the design cycle before the real hardware is available.  

RTL models remain the hardware models in a co-verification platform. 

An obvious difference from pure logic simulation is that co-verification uses

a faster processor model, i.e. Instruction Set Simulator (ISS). This is an

instruction-accurate model developed in C language at a higher level of 

abstraction.

The co-existence of hardware and software during the SoC verification

process is the essence of co-verification. While the hardware platform is

connected to a logic simulator, a symbolic debugger links the associated

software program to the ISS for its execution on the platform. Such co-

operation offers a simultaneous controllability and visibility over both

hardware and software to analyze the system behavior or performance. The

simulation speed is of orders of magnitude higher than the one of logic 
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simulation. Since the breadboard is not manufactured yet, any modification 

of the system hardware or software at this stage will be both time and cost-

efficient.

Despite the numerous benefits yielded by the co-verification, it is still too

long to wait for the development of RTL hardware models before the co-

verification can be conducted. The time pressure has pushed us to tackle

another approach: cycle-accurate model. 

• Cycle-Accurate Model

This attempt tries to replace the non-processor hardware parts by a model

residing at higher level of abstraction. The prospective model could be

developed using high-level programming languages such as C. Compared to

RTL models, this model is less precise. It is sensitive to whatever happens at 

the interval of each clock cycle, which is more than enough for software 

verification but not providing any synthesizable description. 

With the emerging C-based dialects that support hardware concepts, it 

seems convincing that cycle-accurate models developed in a C-based 

environment could meet the three criteria mentioned earlier for raising the

abstraction level. However, this hypothesis has stumbled upon a few

obstacles [1-4]:

a) Most of the information captured by cycle-accurate models is

unavailable in IP documentation but only in the designer’s very mind 

and the RTL source code itself! Consequently, RTL designers have to 

invest much time to keep modeling engineers informed; otherwise

modeling engineers must reverse-engineer the related RTL code.

Either way ends up being a tedious and time-consuming process

without actually solving the issue.

b) Cycle-accurate models can simulate merely an order of magnitude 

faster than the equivalent RTL models, which is really just too close 

to the speed of VHDL/Verilog models.

Not only is simulation speed too slow to run a significant amount of 

embedded software in a given time-frame, the development cost is also too 

dear to compensate for the negligible benefits of cycle-accurate models. In 

addition, architects and software engineers do not require cycle-accuracy for 

all of their activities; for instance, the software development may not involve 

any cycle-accuracy until engineers work on the optimization.

• Temporal Model

Instead of balancing speed and accuracy, the temporal model is attempted 

as quite a different approach to raise the abstraction level. This model is

mainly opted for the performance analysis of a system. While timing 

analysis is the focus of temporal models, analytical accuracy is forgone. 
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Some efforts were given in the development of the temporal model. The

resulted model provided extremely high simulation speed but with little or 

virtually no functional accuracy guaranteed. The temporal model is thus far 

from being the ideal solution to our need of raising the abstraction level.

1.3 Birth of Transaction Level Modeling 

Through our different attempts for raising the abstraction level, we have 

concluded that the most compelling resolution is to adopt the famous “divide 

and conquer” approach. This approach counts on two complementary

environments as the best bid to balance the trade-off between simulation

speed and accuracy, i.e. transaction level modeling (TLM) platform and 

register transfer level (RTL) platform.

• SoC TLM Platform 

TLM platform is intended for early SoC exploration in the design flow at 

a relatively lightweight development effort. It is a transaction-based 

abstraction level residing between the bit-true cycle-accurate model and 

the untimed algorithmic model. Our development work has demonstrated 

that SoC TLM platform makes an excellent complement to RTL platform 

as an adequate trade-off between simulation speed and accuracy. On top 

of the untimed functional TLM, it is also possible to add timing

annotations to TLM platforms for early performance analysis without 

paying the cost of cycle accurate models.

• SoC RTL Platform 

RTL platform aims for fine-grain SoC simulations at the expense of 

slower simulation speed and later availability. It applies cycle-accurate 

HDL models for a detailed timing analysis. 

The idea of “divide and conquer” proves itself an extremely efficient 

modeling strategy. With the high modeling and simulation speed offered by

TLM platforms, potential users could quickly accomplish a systematic 

analysis for a given SoC as the first approach. A comprehensive timing

analysis based on RTL platforms will follow afterward to provide results 

that are more accurate. Hence, this complementary characteristic enables a

system-under-design to go through rapid methodical study as well as in-

depth exploration. Figure 2-1 gives the efficiency levels of the different 

modeling strategies, including RTL, cycle-accurate model (CA), and TLM.

It shows clearly how TLM helps the concept of “divide and conquer” 

become a success through its high modeling and simulation speed.
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Figure 2-1. Efficiency of Modeling Strategies

A question wondering in your mind now could probably be “Why would 

TLM be so interesting compared to other rival propositions?” The answer is

that we have successfully identified the appropriate level of abstraction, 

TLM, which has a description usable for embedded software development MM

and early architecture analysis thanks to its adequate trade-off between

simulation speed and accuracy. 

Most of the propositions available in the field use proprietary C-based 

languages such as SpecC, Hpascal or HardwareC to implement cycle

accurate models. High-level models, on the other hand, are either expensive 

solutions sold by CAD vendors or limited versions reserved for academic

applications. Although these high-level models give temporal view of a 

system, they are not precise enough to develop any embedded software.  

Before considering the advantages that TLM has to offer, its very distinct 

point from other propositions is the use of SystemC -an open-source 

programming language- that suggests a free of charge development 

environment for a tangible solution. 

SystemC provides a foundation to model hardware and software of a

system based on a single language. It is an object-oriented approach built on

top of C++ as a set of classes. A system conceived by SystemC demonstrates 

particular characteristics in concurrency, reactivity, distributiveness, timing, 

and data types. Further details of TLM modeling techniques using System C 

will be discussed in Chapter 3.

The remainder of this chapter presents a zoom-in discussion on TLM 

ranging from its principles to its battle against the SoC design bottlenecks. 
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2. PRINCIPLES OF TLM 

2.1 Terminology 

TLM offers a new SoC design methodology at a higher abstraction level

above RTL, i.e. a transaction-level modeling technique intended for digital

electronic systems.  

In a digital electronic system, every single component is composed of a

finite set of states and a series of concurrent behavior. TLM models each of 

these components as a module. The internal states of a component are 

represented by a set of variables defined within the scope of the

corresponding TLM module, whereas the different behavior pieces of the

component are modeled by a collection of concurrent processes or threads,

which can be executed in parallel.

Just like the components of a SoC, TLM modules are gathered to form a 

TLM system. Through a specific TLM communication structure, namely 

channel or l interconnect, communications are established between modules.

Depending on the accuracy level required by the corresponding simulation, a 

channel could be a simple router, an abstract bus model, a network-on-chip 

model, or some other structures. This is essentially the very part that 

separates communication from computation in TLM modeling. 

Modules and channels are bound to each other by means of 

communication ports. Once they are bound together, data can be exchanged 

between them to perform the expected system behavior. Potentially, data can 

also be communicated between modules and test-benches. 

The term transaction denotes the set of data being exchanged. A master

or initiator is a module that initiates transactions in a system, while ar slave

or target is a module that receives and serves transactional requests. Anyt

consecutive transactions may have various sizes of data transfer. This 

variable size corresponds to the amount of data being exchanged between 

two occurrences of system synchronization. 

System synchronization is an explicit action between at least two 

modules (potentially test-benches) that need to coordinate or manage some 

behavior distributed over them. Such co-operation of different modules is

vital to assure the predictable system behavior.  
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Since it is the only mechanism available for synchronizing the different 

processes in a system, the explicit system synchronization is compulsory to

ensure a proper deterministic SoC TLM behavior. An example of system 

synchronization is the interrupt raised by a direct memory access (DMA) to 

notify a transfer completion within a system. 

2.2 Modeling Approach 

The terms of TLM defined in the last section can be attained through an

appropriate electronic system level (ESL) modeling approach. The right 

candidate to do this job is a high-level programming language that is capable 

of developing not only a plain software program, but also of modeling

electronic hardware at the conceptual level without describing the real

implementation. The potential candidates include SystemC, SpecC, Hpascal,

System Verilog, HardwareC, and the like. In our opinion, SystemC is the 

best candidate and we therefore rely on it for all of our TLM models.

As discussed earlier, a SoC component is modeled as a module in TLM. 

The primary modeling effort lies in the internal computation of the given

hardware block at the functional or behavioral level. The input and output of 

the block as well as its synchronization are to be modeled. None of the 

micro-architectural implementation details should be included, i.e. neither 

internal pipelines nor structures are modeled. To sum up, TLM modules 

representing SoC hardware blocks or IPs must hold the three characteristics

stated below:

1. bit-true behavior of the component;

2. register-accurate interface of the component ;

3. system synchronizations managed by the component. 

A complete SoC TLM platform is constructed by instantiating and 

binding different modules and channels together. Once the platform is

integrated, SoC simulation is performed by executing the related embedded

software either as native or cross compilation. The earlier is executed on a 

simulation workstation for fast simulation speed, while the latter is executed 

on the embedded processor architecture, i.e. ISS, for precise simulation 

accuracy.

To ensure a proper system functional behavior in TLM SoC simulation,

there are two essential points that deserve attention in the modeling process.

First, all the data transactions must be blocking i.e. the thread that initiates

the transaction will resume its execution only if the current transaction is

completed. Second, all the occurrences of the system synchronization must

be potential re-scheduling points in a simulation environment in order to  
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guarantee an accurate simulation of the concurrency. The system 

synchronization could be modeled by specific means such as event, signal,

and interrupt; or by data-exchanges such as polling. If any of these potential

system synchronizations causes a call to the simulation kernel, it enables the 

scheduler to activate other modules. Hence, the simulated system will 

behave correctly in line with its functional concurrency.

The essence of working out an appropriate model at transactional level

lies in the good sense of deciding where and when to implement system 

synchronization. If too many synchronized points are inserted, the model 

will tend to be too close to cycle-accurate or RTL models that will not help

to gain much simulation speed. Contrarily, if too few synchronized points

are implemented, the model may run the risk of having incorrect system

execution.

Figure 2-2. TLM vs RTL Simulation 

Consider the two simulations depicted in Figure 2-2, which are

correspondingly the RTL and TLM simulations for a given system. The 

evolution of the system from the first stable system state, S1, to the next 

stable system state, S2, is represented by FRTL and FTLM respectively. Indeed, 

S1 and S2 are two partial observation points in simulation, i.e. two 

synchronization points. 

FRTL is a collection of all necessary cycle-accurate computations to bring 

S1 to S2. These calculations are implemented by a set of clocked processes 

that represent the system micro-architecture. Upon each clock cycle, these

processes are activated in the simulation kernel for execution; and that will 

consequently involve countless of context switches. 

On the other hand, FTLM is an equivalent function to bring S1 to S2 but 

without any clock implementation. Computations are defined by some high-

level programming languages such as C or C++. There is principally 
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sequential execution of programming codes between S1 and S2. Compared 

to RTL simulation, it involves much fewer parallel executions of processes.

As a result, there are relatively less context switches involved.  

Recall the efficiency levels of different modeling techniques illustrated in

Figure 2-1, the simulation speed-up achieved by TLM is vastly ahead of 

RTL up to a factor of 1000. Indeed, this speed-up correlates directly with the 

number of processes and context switches activated between two 

occurrences of system synchronization by RTL simulation but not by TLM 

simulation kernel.  

2.3 Modeling Accuracy 

The modeling accuracy of a given modeling approach indicates the

precision or correctness of the model in replicating the intended behavior 

and activities of a system-under-design. For any modeling strategy in the

SoC design flow, there are two decisive factors to determine the degree of 

modeling accuracy: 

1. Granularity of Communication Data.

This criterion reflects the fineness or coarseness of the data carried by 

the communication structure of a model. The data granularity can

generally be categorized into three levels, i.e. application packet, bus 

packet, and bus size, in the order of increasing accurateness. The 

transfer of a video IP helps to illustrate the idea of data granularity. If 

the IP has a frame-based algorithm, a coarse granularity at application 

packet could be modeled as a frame-by-frame transfer. A finer 

granularity at bus packet level can be represented by a line- or 

column-based transfer, or a macro-block transfer consisting both lines

and columns. The finest grain at bus size level will be the pixel-based

transfer of the video.

2. Timing Accuracy.

Timing accuracy determines the fidelity of a model to the intended 

timing behavior. It can be conceptually perceived as a scale of two 

extremes, i.e. untimed level and cycle-accurate level. Moving from 

the untimed end towards the cycle-accurate end will increase the 

timing accuracy of a model. Any level falling in between the two ends

is considered as approximately timed level.    

Just as any other modeling strategies in the SoC design flow do, the TLM

approach naturally revolves around the two factors above to decide its 

modeling accuracy. Guided by these criteria, we have conceived two 

fundamental classes of TLM to date through our development effort: 
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• Timed TLM.

The untimed and timed TLM are models tailored for distinct purposes. 

The ultimate goal is to create a unique platform that simulates two different 

models according to user needs. 

The untimed TLM is an architectural model targeted specifically at early 

functional software development and functional verification where timing 

annotations are not compulsory conditions. The high simulation speed is the 

objective of this model. Since the untimed TLM serves primarily 

programmers, it is hence given another name as programmer’s view (PV).

On the other hand, the timed TLM is a micro-architectural model

containing essential time annotations for behavioral and communication 

specifications. It is relatively a less abstract model located lower in the SoC

design flow. The focus of timed TLM is the simulation accuracy required by

real-time embedded software development and architecture analysis. Hence, 

the timed TLM is also known as programmer’s view plus timing (PVT). g

Figure 2-3 gives a glimpse at the modeling accuracy of the untimed and 

timed TLM with respect to other conventional models in the SoC design

flow, including register transfer level (RTL), bus cycle accurate (BCA), and 

cycle accurate (CA) models.

Figure 2-3. Modeling Accuracy of Various Approaches 

• Untimed TLM.

Data Granularity
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3. UNTIMED TLM 

3.1 Introduction

The untimed TLM is a level particularly conceived for serving software

programmers and verification engineers in early functional software

development and functional verification. Timing annotations are 

insignificant at this untimed level; thus, none of the information related to

the micro-architecture of the component or IP-under-design should be

included.

For the same reason, any information related to the interconnect topology

and arbitration law will not be captured in the untimed TLM. The internal

states of a component are modeled by using appropriate internal variables.

Certain information, for instance, the register bank or memory content of 

a given component, is made available and accessible to the outside world 

through a well-defined Application Programming Interface (API). The

communication API is a blocking API that provides a particular interface to

supervise full data transfer.  

The granularity of the data transferred should correspond to the modeling

level related to the target application. For example, data transfer of an 

image-processing block should be modeled at the frame level, i.e. one frame 

being transferred at a time rather than creating transfers of the bus width.

3.2 Model of Computation 

The untimed TLM has absolutely no timing information related to the

micro-architecture, i.e. there is no clock in an untimed TLM system. Since it

has no clocked timing regulation, all processes are executed concurrently to 

access any of the system resources at the same time instant. Yet, the system 

must demonstrate a correct behavior during the parallel execution of 

concurrent processes. This implies that untimed TLM systems must respect a 

certain degree of process execution order to guarantee a proper system

functional performance. 

To fulfill this requirement, the untimed TLM employs a specific model 

of computation with the following characteristics:

1. concurrent execution of independent processes; 

2. respect for causal dependencies between processes using system

synchronization;

3. bit-true behavior;

4. bit-true communication. 
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3.2.1 System Synchronization 

A system must clearly characterize the causal relation between its 

different processes in order to assure deterministic system behavior. The

explicit system synchronization is therefore implemented within a system to 

respect such causal dependencies. The system synchronization only defines a 

partial execution order for SoC internal events, i.e. a partial execution order 

between the different processes in the whole system. In other words, any

particular execution order among all of the processes is permitted as long as 

their causal dependencies are well respected.

To better illustrate this idea, consider three processes in a given system,

P1, P2, and P3, as depicted in Figure 2-4. Assume that each process denotes 

a thread for a particular module in the system.  

Figure 2-4. System Synchronization between Processes 

The full execution order within each of these processes is represented by

their own internal synchronized events: 

a) P11  P12 for process P1 

b) P21  P22 for process P2 

c) P31  P32 for process P3 

Bear in mind that this “full” order is only a locally complete order within 

each process. It is indeed a “partial” execution order from the point view of 

the overall system execution. Besides, there are two occurrences of system

synchronization between P1 and P2, which give additional constraints to the 

overall system execution order:

d) P11 P22

e) P22 P12
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The constraints of execution order stated from (a) to (e) clearly describe

the causal dependencies that must be respected within the system. The three

processes can be executed with any particular order as long as these causal

dependencies are followed. Here are some examples of the different overall

system execution order (which are also known as process interleaves):

f) P21 P11  P22  P12  P31  P32 

g) P31 P32 P21 P11 P22 P12

h) P11 P21 P22 P31 P32 P12

The system synchronization is a mechanism to inform others or to get 

informed by others about some system state changes when these changes

potentially influence the execution of some other parts of the system. In real

hardware circuits, system synchronizations are modeled by means of 

interrupt signals, polling or mailbox. The TLM simulation will implement all

of the system synchronizations as interrupts, mailbox or polling in line with

the model of computation stated earlier. An abstract implementation of the 

various synchronization mechanisms, however, could be provided to better 

match with the considered level of abstraction.

According to its nature of informing or being informed, there are two 

kinds of synchronization. First, “emit-synchronization”. This occurs when a

process sends out a synchronization that may influence the behavior or state 

of other processes. Second, “receive-synchronization”. This is a point where

a process waits for an incoming event from the system that may influence its 

behavior or state.

Picture this: every synchronization point is a traffic light in a given 

system. Each of these “traffic lights” is associated to a certain condition; for 

instance, the occurrence of an event or the computation of a particular value. 

Once this condition is fulfilled, the green light will be on to allow the system 

to proceed to the next execution point. Otherwise, the red light is there to

stop it. All these little “traffic lights” scattered in the system has a big 

mission: work hand-in-hand to guarantee a proper predicted system 

behavior.

An important employment of the system synchronization is the assurance 

of memory or data consistency. Here, the system synchronization prevents

concurrent processes from reading data content at unknown state; it also 

prevents them from writing data at temporarily inaccessible memory area.  

A direct beneficial impact of the system synchronization is the capability 

of executing any legal interleaves of processes without breaking the overall

system synchronization. The system synchronization also serves as an 

efficient method to improve the validation of the system simulation model

by allowing more process interleaves to be tested. The model of computation

only requires the causal dependencies to be respected by the simulation. 

Thus, it is possible to randomize the process selection as long as the system
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synchronization does not define a full order of process execution. This is 

particularly useful in the case where simulation kernels do not provide 

random process execution.

All of the system synchronization points in a system must be explicitly 

modeled for a correct system behavior. If an untimed TLM system ever 

generates any simulation deadlocks or failures, the explanation will be the 

system synchronization not being explicitly modeled to the fullest, or simply 

badly designed. By slight chances, a system with incomplete 

synchronization modeling may appear to function as normal at certain values 

of clock frequency. It will however fail to perform at other clock

frequencies. Undoubtedly, such incomplete modeling will adversely

jeopardize a safe chip execution.

3.2.2 Process Execution 

The concurrent execution of independent processes is one of the major 

characteristics of the untimed TLM. Simulation kernels are usually 

implemented in such a way that they offer repeatable process executions to 

simplify debug activities. Note that simulation kernels cannot give a

deterministic execution of concurrent processes (even the language reference

manuals cannot guarantee a deterministic execution of concurrent 

processes). It means that we cannot predict which process that the simulation

kernel is going to start executing; but once the simulation is executed, the 

kernel will repeat the same execution order. 

Although the repetitive feature of simulation can facilitate the debugging

procedure, a single system execution order may not provide satisfactory 

validation coverage. In our last example of system synchronization, the

overall system execution can start with any of the three processes. If the 

simulation only covers a single execution order, we would probably miss

catching the bugs hidden in other execution orders! As an example, imagine

another synchronization that imposes a constraint of executing P21 before 

P11. If the repetitive simulation kernel picks the system execution order of 

(f) or (g), the simulation will pass without detecting any error. An error, 

however, would have occurred in the system performance by following the 

execution order of (h) where P21 is not executed before P11. 

To tackle this limitation, we must make sure that any execution order will 

conform to the system functional specification. An appropriate solution to

increase the coverage of system execution orders will be extending the

standard simulation kernel with a random function that shuffles all of the

legal process interleaves. With such mechanism, it is feasible to verify all of 

the possible micro-architectures of a given architecture specification.  
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This definition actually corresponds to the implementation of 

asynchronous processes that use synchronization points to ensure a correct 

execution of the system. If one expects to cover all of the possible process 

interleaves as in the real-life system, it will obviously produce a huge

number of combinations with lots of them being meaningless. Hence, it is 

worth-noticed that it is possible to reduce the indeterminism of concurrent 

process execution by introducing successive constraints in the untimed 

models based on their partial system execution orders. 

A typical example is the integration of timing constraints that make sense

at the functional level. The objective is to reduce the number of potential 

process interleaves by adding constraints in the selection of the various

processes for the simulation. Here, the timing information is only related to

functional constraints (e.g. a video application imposes to decode 30 frames 

per second), but no information on the micro-architecture is incorporated 

yet. The result is a decreased indeterminism, which reduces the simulation 

variants to be considered for the system validation. This will be further 

discussed in Section 4, Timed TLM.MM

3.2.3 Time-Independent Deterministic Behavior 

This section explains how the computational model of the untimed TLM 

handles the constraints of process execution order without implementing 

timing characteristics. 

Consider a fixed set of input stimuli for a given SoC. The system

synchronization points implemented among the different processes will

induce a deterministic behavior that is independent of any timing behavior 

during the simulation. Each of these processes follows a particular sequence

as described in Table 2-1. 

Table 2-1. Untimed Process Sequence 

Step Action

1 Activate or resume a process.

2 Read input data for control flow and data processing. 

3 Computation.

4 Write output data if there is any of them. 

5 Return to step 2 if more computation is required. 

6 Synchronization: 

(a) if it is “emit-synchronization”, return to step 2;

(b) if it is “receive-synchronization”, the process will be suspended. 
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When a process reaches step 6 in the untimed sequence, the component 

state will have already been fully defined, and the memory state modified by

the process should be fully defined as well. Only when a process reaches

step 6(b) of “receive-synchronization”, it will be suspended. This is the only

situation where a process needs an update of the system state that might 

influence its own behavior. As a result, the simulation kernel could by no

means suspend a process by itself, i.e. the simulation kernel is not pre-

emptive. This will definitely assure predictable process states and process

controls, which are independent of any specific implementation of the

simulation kernel. 

Most of the time, a process could include many synchronization points

and that will produce a very complex control flow graph with many possible

activation-synchronization paths. Note that reducing the number of the

descheduling points in a system model to the “receive-synchronization” can 

be very beneficial. While assuring a correct simulation of the SoC 

architecture, such reduction can greatly minimize the number of context 

switches compared to other computational models. Therefore, the kernel 

overhead is minimal, leading to the simulation speed close to the one of pure

algorithm.

3.3 Modeling of Interrupts 

Literally, interrupts mean disruptions that could result in certain 

consequences. For electronic systems, an interrupt is considered as a system

event with side effects such as triggering a delayed management of 

processes or updating registers of interrupt-status.

Recall that system synchronization is very often implemented by an 

interrupt signal. In the untimed view, an interrupt is however an impulsive

system event without any persistence. It is therefore inappropriate to model 

it using a signal. Instead, a dedicated TLM synchronization protocol with the

following features is employed: 

a) immediate propagation of interrupts from an initiator to a target; 

b) notice of potential IP internal state change, i.e. status register update.

While developing untimed interrupt models, the first-in-first-out (FIFO)

mechanism must not be implemented in the reception structure as it may

cause serialization of concurrent events undesirable at that level. Upon the 

generation of an interrupt, the target IP may invoke a consequent effect out 

of its own scope. In that case, meticulous care must be taken so that another 

process but not the one generating the interrupt will handle the consequent t

effect. This will avoid changes in the system state caused by the process 

generating the interrupt in the Remote Procedure Call (RPC) coding style. 
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3.4 Insertion of Functional Delay  

At the architectural level, it is still necessary to introduce some functional 

timing information, i.e. functional delay, when these delays are part of the

system specification (e.g. a video decoder decodes 30 frames per second).  

Sometimes, an untimed TLM IP is inserted with functional delay to 

implement implicit synchronization points related to specific timing 

information. As an example, a Liquid Crystal Display (LCD) controller with

a screen-refresh frequency of every 1/30-second can be modeled without any

explicit synchronization. It means that the untimed LCD controller can be 

created with implicit timings by adding some delay information and wait 

statements of specified time length into the model.

From the angle of computational model, such implicit timings bring

additional constraints to the execution order of processes in the simulation, 

and thus reduce the set of possible process interleaves. As a result, the

untimed model inserted with functional delay is created as an intermediate

level between the purely untimed TLM and the timed TLM. Model 

developers should guarantee a flexible manipulation of this intermediate

model by allowing users to easily enable or disable the annotated delay 

information. It must leave users enough room to switch back to a purely 

untimed model for validation purposes. Furthermore, this intermediate 

model should never cover any functional information related to the micro-

architecture such as FIFO, Finite State Machine (FSM) related to cycle-

accurate behavior, or any other implementation-dependent features.  

Figure 2-5 illustrates the typical timelines of a process execution 

occurring in the untimed TLM. Two cases are demonstrated: 

a) Simulation without functional delays based on a functional 

specification that only defines sequences of actions.

b) Simulation with functional delays based on a functional specification

that defines some timing attributes such as UART baud rates.  

Adding functional delays to an untimed model does not particularly

influence the model of computation. Processes will still have activation,

emit-synchronization, and receive-synchronization points. The execution

order of various processes will be more constrained because the inserted 

functional delays restrict the set of potential process interleaves eligible for 

simulation. In other words, there are fewer choices of process interleaves for 

the simulation kernel at a given time instant.

Functional delays can suspend a process to induce the simulation kernel

to choose other eligible processes for execution. This cause-and-effect

phenomenon can influence the system state, but should never cause any r

system inconsistency from the perspective of computational model. The 
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reason is that the system synchronization must fully and explicitly model ally

causal relations of a system. An error will otherwise arise in the system 

synchronization scheme, and that is considered as a serious bug in the SoC

specification.

Figure 2-5. Simulation Timelines of Untimed TLM

Let us look into this statement more carefully through an example. 

Consider a system that is modeled by a group of processes denoted from P1

to Pn. Assume that a functional delay is inserted into the codes of P1, and 

that induces the simulation kernel to select another process, say P2, for 

execution. The system state could potentially be affected by the execution of 

P2. If that is the case, the global system state will have already changed 

when P1 resumes its execution.

Such global change of the system state should not influence the

remaining execution of P1. This process should be able to continue its

activities until it reaches the next functional delay or receive-synchronization

point. If this interleaved execution of P1 and P2 happens to affect the 

remaining execution of P1, there is certainly a missing part of system 

synchronization somewhere between P1 and P2. 

The adverse consequence of such incomplete modeling in the system 

synchronization is the dreadful inconsistent simulation result. This is the
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reason why the computational model of the untimed TLM obliges explicit 

modeling for every single system synchronization point in a given system.

Modeling engineers must insert functional delays into untimed models in 

such a way that the system synchronization can still manage to capture all

the causal dependencies in a given system. This is a good modeling practice 

to assure the system stability, despite the variations of the clock frequency 

and the indeterminism of the micro-architecture (e.g. transaction latency on a 

bus depends on the bus load) in the sub-systems of a SoC. 

3.5 Recommendation for Modeling Practices 

Collected hereafter are our general recommendations for the untimed

TLM modeling practices based on our experience in TLM development. 

Advices on implementation concerns are provided in Chapter 3. 

1. Consider the intended uses of IPs on the final platform to efficiently

determine how the corresponding TLM models should be written up.

2. To increase reusability, organize models in such a way that the algorithm

can easily be updated, and reuse readily available standalone C models as

much as possible. For the reason of code portability and management,

these C models should never be replicated as “hardwired” copies in the

TLM environment. Rather, they should be reused by means of wrappers

or external function calls.

3. Determine the data granularity of models according to the algorithmic

accuracy and the expected precision in terms of transfers. For example, 

the model of a video IP expecting frame-level input should be modeled 

with data granularity at frame level but not pixel level, despite the actual

capability of the interconnect in the silicon. However, if there is a 

mismatch between the data granularity of the algorithm and the data

layout in the memory according to the memory map, it will be the job of 

the TLM wrapper to generate the correct addresses so that the data is 

stored and retrieved from the correct memory locations. 

4. Model all sorts of communication interfaces at bit-accurate level, 

particularly for register modeling.

5. Model all sorts of behavior at bit-accurate level.

6. Focus modeling with respect to the functional specification only, i.e.

including no micro-architectural and clock-based information, resources,

or details. 

7. Model explicitly the system synchronization that affects the IP behavior.

8. Employ events within a model whenever that is appropriate for modeling

the inter-process synchronization. 
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9. Utilize specific synchronization means such as synchronization protocols

to model the inter-module synchronization.  

10.Avoid implementing the process-activation based on a regular basis; the 

process-activation based on system activity is compulsory.

11.Ban uses of global variables.

12.Adopt good software implementation style to facilitate code debugging 

and maintenance, e.g. add comments in codes. 

4. TIMED TLM 

4.1 Objective

As far as we have discussed for the untimed TLM, the system 

synchronization only defines a partial order of the overall SoC internal

events. The identification of the full order of SoC events is hampered by an

indeterminism because the untimed TLM does not capture micro-

architectural details, i.e. the timing behavior of the implementation.

The timing behavior of a component specifies the delay between each

activation and synchronization-suspension. If this timing behavior is

incorporated into TLM, the resulted timed model will be able to determine a 

full order of SoC events; hence leading to a complete specification of the 

implementation. 

The main objectives for developing the timed TLM are:  

• benchmarking of the performance of a given micro-architecture;

• fine tuning the micro-architecture;

• optimizing the software for a given micro-architecture to meet real time

constraints.

Other objectives for implementing timed TLM models include:

• flexible modeling and refinement of timing accuracy according to 

customized user needs;

• reuse of untimed models to reduce time-to-market of SoC products;

• ability to plug different timing models into the same untimed model; 

• dynamic switch to turn timing on/off in a given model; 

• legacy management of reusing cycle-accurate models;  

• independent, concurrent yet integrated developments between untimed-

oriented verification team and timed-oriented architecture team.
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4.2 Modeling Approach 

To develop a timed model at the transactional level, considerations must 

be given to the time consumption of two aspects: computation and 

communication.  

The computational delay  is the time amount required to perform specific 

calculations in characterizing a given system behavior or function; whereas 

the communication delay  is the total time consumed in accessing and 

transferring data or information. The various physical constraints that could 

bring a significant impact on the system timing behavior such as bus size, 

bus throughput, or memory size, must also be taken into account during the 

timed TLM development.

We model the time consumption of a given component in timed TLM 

through two different tactics: 

1. Annotated model 

2. Standalone timed model.

4.2.1 Annotated Model 

The annotated model  is a modeling approach where timing delays are 

annotated, i.e. inserted, into an untimed model. These annotated delays are

the timing information of the micro-architecture level, which make the

annotated model distinct from the untimed TLM model inserted with 

functional delay at architecture level (as described in Section 3.4).  

Here, the delay of each possible set of activation-synchronization in a 

process is defined based on the control flow of the concerning component.

This delay can be modeled with the values of the best, mean, or worst cases.

A process could sometimes include very complex control graphs that will 

consequently entail a large set of timing attributes. If the modeling task 

becomes too large to handle, a “lazy” approach could probably be adopted 

by providing only the default conservative values for the unresolved 

activation-synchronization path. These conservative values constitute the

minimum acceptable set of timing constraints that an implementation must

comply to.  

In general, the annotation approach is well suited if the structure of the 

untimed model already matches the structure of a micro-architectural model, 

where annotations will be simple wait statements related to the computation 

time of a specific functionality. We try to reuse untimed TLM models 

without any alterations through this approach, although some adaptations

could be necessary in certain cases. It is essential to protect the timing 
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annotations with preprocessing directives (e.g. #ifdef ANNOTATED_MODEL) in

order to select the appropriate execution mode (untimed or annotated)

according to user needs.

4.2.2 Standalone Timed Model 

The standalone timed model is a different approach where the actual 

timing behavior is modeled in such a way that delays are computed during 

the execution of a standalone timing model. Our development results have

shown that this is applicable on hardware IPs and processor models. 

A standalone timed model denotes a detached model incorporated with

the timing information. This model is suitable when the structure of the

algorithm is very different from the structure of the micro-architecture. 

Indeed, annotations cannot lead to an accurate timing in such cases.

Consider the example of modeling a video application. If modeled at the

frame level, only those delays associated with decoding a frame can be 

annotated. The micro-architecture of the application, on the other hand,

allows both the communication and computation to be interleaved.

Conceptually speaking, standalone timed models are high-level analytical

timing models without functional information. They can be built as traffic t

generators, which model the channel or interconnect traffic with some 

timing information. 

If the timing behavior of a component depends on its functional behavior, 

the corresponding standalone timed model can be controlled externally, for 

instance, by an untimed TLM model. In that case, all the functional events 

occur during the functional execution of the untimed TLM model must be 

traced and provided to the standalone timed model. A timing control unit is

used to manipulate this information between the untimed TLM and the 

standalone timed model.  

Figure 2-6 gives a better idea about the concept and structure of a 

standalone timed TLM model combined with an untimed TLM model.

There are two general guidelines to realize the mixed model described 

above for a given IP. First, develop a purely untimed TLM model describing

the functional behavior of the IP regardless of its timing characteristics. 

Second, develop a timed module in charge of all timing and micro-

architecture related information of the IP, without duplicating the functional 

codes already done in the untimed model. The overall mission of the mixed

model is characterized hereafter. 
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Figure 2-6. Combination of Untimed TLM and Standalone Timed Models 

Untimed TLM Model

a) The untimed TLM model executes the pure untimed behavior that will 

consequently generate or receive transactions through its communication

ports. This model must be instrumented for generating traces of 

functional events, which will trigger certain activities in the timed model.

Standalone Timed Model

a) The standalone timed model implements the mechanism to represent the

timing behavior. If the design schedule is too tight to allow developing a

very detailed and accurate model, the standalone timed model can be

modeled with coarse grains. For a precise implementation, it can be 

modeled at the micro-architectural level with approximate cycle-

accuracy. Standalone timed models are normally controlled by using

functional traces generated in the untimed TLM model. 

b) The standalone timed model declares communication ports to capture

transactions from the untimed model and to insert time delays according 

to the traces of functional events. Transactions are exchanged through

both untimed and timed ports of the timed model. Untimed ports are

connected to an untimed communication channel/interconnect while 

timed ports are connected to a timed channel/interconnect. Details on the 

model of computation and rules to issue transactions on untimed/timed 

interconnects are provided in Section 4.3.

Mi d U ti d d Ti d M d l
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• Concurrent development of functional and timing models facilitated by

the clear distinction between their modeling strategies. 

• Multiple timing scenarios ranging from high-level to very accurate low 

timing level can be defined, and they can coexist for a unique functional 

model. 

• Untimed models are reusable as the golden reference for functional 

verification without modifications.

• Optimized speed granted by the dynamic switching between untimed and

timed models at the simulation run time.

• Mixed simulations involving timed and RTL models are feasible. 

• Architecture and micro-architecture teams can work concurrently on 

different but complementary models

4.3 Model of Computation 

4.3.1 Inter-Execution of Untimed and Timed Models 

The working concept of the timed TLM can be pictured as an inter-

execution of untimed TLM and standalone timed TLM models. Figure 2-7

illustrates the simulation timelines representing the activities of a process

execution in the timed TLM.

Figure 2-7 Inter-Execution of Untimed and Timed Models7

The mixed model offers numerous advantages as follows: 
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Note that the functional behavior of the untimed model is executed until 

it reaches a synchronization point. The execution is then passed to the

standalone timed model. The timing model will start simulating the delays 

associated to the functional parts that have just been executed earlier. 

Meanwhile, time delays of communications and computations are simulated 

in the timing model as well. Once all of the relevant delays are simulated, 

the untimed model will resume its execution until the end of its simulation.  

The “inter-execution” of untimed and timed models is permissible as 

long as the untimed model is fully modeled using explicit system 

synchronizations. In this condition, read/write operations are generated only

when the data is ready within a stable system. Let us zoom in on the details 

of such inter-executing mechanism by considering the platform depicted in

Figure 2-8. The initiator IP is the master while the target IP is the slave.

The untimed platform is composed of:

• the untimed model of the initiator (I);

• the untimed model of the target (S);

• an untimed communication channel (C). 

The bindings for the untimed platform are as follows:

• the initiator port of I is connected to the target port of C; 

• the initiator port of C is connected to the target port of S.

In addition, the following modules are instantiated in the platform to 

support the “inter-execution”:

• the standalone timed model of the initiator (TI);

• the standalone timed model of the target (TS);

• a timed communication channel (TC)1.

1  Timed channel can be hierarchical to represent the internal topology of the interconnect.
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Figure 2-8. Mechanical Structure of Inter-Execution

The bindings related to the inter-execution are as follows: 

• the initiator port of I is connected to the untimed target port of TI; 

• the untimed initiator port of TI is connected to the target port of C; 

• the timed initiator port of TI is connected to the target port of TC;

• the initiator port of TC is connected to the timed target port of TS;

• the initiator port of C is connected to the untimed target port of TS;

• the untimed initiator port of TS is connected to the target port of S. 

All sorts of transactional accesses are set off from the initiator to the 

target through the initiator port; and the functional information is passed to

the standalone timed model through the appropriate data structure. 

Referring to Figure 2-8, TI traps transactions issued by I I. When II I meets a I

synchronization point, the standalone timed model TI will start its execution.

It computes all of the necessary delays as modeled in the timing model of the

micro-architecture, and it issues transactions. As I may have generated 

transactions at a high level of abstraction (e.g. frame), TI will generate theI

appropriate number of transactions from the micro-architectural point of 

view (e.g. pixel). TI may also reorder the transactions to represent read andI

write interleaves in cases like pipeline. 

The overall communication mechanism is as follows:

1. Transactions are issued by TI onI C.

2. Transactions are received by TS fromS C. A careful analysis is diagnosed 

on the transactional access to identify its nature. Depending on the nature 

of the access, TS will handle the transaction accordingly. There are two S

kinds of accesses:

a) insensitive access - no impact on the IP synchronization scheme.

b) sensitive access - leave impact on the IP synchronization scheme. 

For an insensitive access, the simulation continues directly in TS for any S

potential computational time delays associated with the transaction. Indeed,
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the TLM transaction is propagated “in advance” compared to the actual

event occurrence in the silicon. Such advance is permissible on condition

that the synchronization scheme can prevent the system consistency from 

being corrupted by the access. For analysis purposes, the corresponding

communication delay from the initiator to the target is passed through the

timed channel TC, although they will be ignored by the target for the

simulation. 

For a sensitive access, on the other hand, the transaction emitted from TI

is rejected by TS. Early accesses are not granted in this case because certain 

behavior could be triggered earlier than what it should be. The adverse 

consequence will be the undesirable system inconsistency. To prevent this

from occurring, TI must re-generate the transaction by transferring it through I

the timed channel, TC, in order to include the related communication time

delay. The transaction will now be received and accepted by TS with theS

correct time granularity at the right timing. Then, the access will be re-

generated by TI on C to actually read/write the data. 

Any computational time delay closely related to the initiator or target IP

is managed locally by the timed models of the respective IP. Asynchronous

events such as interrupts are handled at every single activation boundary. 

Fine-tuned behavior can be obtained in using pseudo synchronization points 

as described in Section 4.3.3. 

4.3.2 Discussion on Standalone Timed Model Techniques

The standalone timed model is a technique implying a strict compliance 

with the modeling rules discussed earlier to ensure no micro-architectural 

timing information is implemented in the untimed model. The key advantage 

is the very neat separation of functional untimed models from micro-

architectural timing representations. Thus, it is straightforward to develop 

several standalone timed models for a given functional model, which allow

investigating several micro-architecture scenarios.

With such techniques, the sequence of communication and computation

delays may not correspond to the associated functional sequence (while they 

usually do). For example, an untimed model may grab a full image to 

process it in one-shot while a timed model would process the data accesses

and computations as interleaves. In addition, communication and 

computation delays can be interleaved in various manners, which could 

probably be different from its sequence of functional behavior too, e.g.

pipeline characteristics. Compared to the functional model, validating the 

standalone timed model should be handled more carefully to ensure that no 

error is inserted. 
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Since the functional and timing information are clearly separated

between untimed and standalone timed models, it is possible to couple

untimed models with traffic generators. Traffic generators connected to the 

timed interconnect can act as standalone timed models. The untimed model 

drives the traffic generator, which is not aware of the functionality but able 

to generate meaningful bus sequences on the interconnect. This method is

particularly useful when traffic generators are developed before transactional

models, with the intention of reusing both of them in the future.  

4.3.3 Pseudo Synchronization Points 

Based on the principles of the system synchronization described so far 

for the untimed TLM, asynchronous events such as interrupts are perceived 

only at the activation “boundaries” of the untimed TLM. This is due to the 

synchronization mechanism coupled to a non-preemptive simulation kernel. 

As a process will suspend only on explicit synchronization points, no

other processes can execute in the background. While this is not an issue for 

purely untimed models, it becomes a concern when mixing untimed and 

standalone timed models. Indeed, asynchronous events may occur too late

during the suspended phase of a thread under certain circumstances. 

Consequently, they may not be caught at the appropriate time.  

To handle this problem, finer-grain pseudo synchronization points are

defined in untimed TLM models. These false synchronization points behave

as if many pre-emption points appear more frequently to check for 

asynchronous event occurrences. They enable timed TLM threads to manage

incoming asynchronous events such as those for memory accesses in 

between synchronization points.

4.3.4 Absolute Micro-Architectural Features

Most of the features for a given system can be modeled as a pure 

functional model, and can be further refined as a timing model. Certain 

features, however, are not represented in a pure functional model because 

they are not relevant at that level of abstraction.

Modeling engineers should be aware of some complex micro-architecture 

blocks that might be added at the micro-architectural level to optimize the 

(timing) performance. While such blocks have no relevance to the functional

level, it becomes compulsory to model them in a standalone timed model. 

The reasons are that these blocks definitely related to the micro-architectural 

information of the system, and they have known impact on the system

performance.



52 Chapter 2 2

TLM can manage such features by integrating the micro-architectural

information as well as the related behavior into the timed module. An

excellent example to illustrate this idea is the modeling of memory cache.  

By definition, a cache is an implementation to improve the performance

of the real system. It is not required to be included in the simulation to verify

the functional correctness of the design. For this reason, a cache should not 

be conceived as an architectural model. What we wish to observe in the 

simulation is the actual traffic of cache activities on the channel for 

collecting its actual timing figures. 

Therefore, the cache needs to be modeled accurately for its traffic and 

timing changes in the timed simulation as the micro-architectural model. The

timed model of the memory cache includes not only timing information, but 

also some code pieces that reflect the cache effect on the data amount 

generated onto the channel. 

The same approach applies to the reuse of an instruction-accurate ISS in 

a timed platform. The modeling of the pipeline and cache features as micro-

architectural timed models is compulsory to obtain accurate timing figures. 

5. ADVANTAGES OF TLM 

Amongst the abundant endeavors proposing modeling techniques at 

higher abstraction level, TLM has managed to sail its way through to offer a 

promising solution to SoC industry. As a reliable methodology that can

rapidly improve the design productivity, TLM confronts the SoC design

bottlenecks in complexity and time pressure through three axes: 

1. Early software development.

2. Architecture analysis. 

3. Functional verification. 

• Early Software Development 

Software development activities, especially debugging and validation, 

will have effect only if the software could be executed on its target platform. 

Conventionally, a physical prototype such as emulator or FPGA board 

prototype is considered as the starting point of software development. The 

downside of this approach is obviously the late availability of such starting 

point too close to the end of the hardware development. Not only is the time 

a hindrance, any hardware issues revealed by the software execution at this 

stage will be too costly to fix as well.  

The hardware/software co-verification could of course start executing the 

software earlier on the target hardware platform. But then again, it still needs 

to wait quite long for RTL hardware models before running anything.
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Rather different from the two approaches mentioned above, TLM SoC 

platform can be developed right after the delivery of system specifications. 

The target platform is therefore available for the software development much 

earlier in the SoC design cycle. In other words, the software development is 

now conducted in parallel with the lengthy hardware development, i.e. a

veritable concurrent hardware/software design is attained. 

With the “contract” of TLM platform signed between them, both

software and hardware teams cooperate in an independent but converging

manner. Software developers regard TLM platform as the reference to run

their codes while hardware designers consider it as the golden reference for 

their RTL design. 

In general, software developers employ TLM platform for two kinds of 

software development: 

a) functional software development using untimed TLM;  

b) optimized software development using timed TLM.

The greatest advantage of having early software development based on 

TLM platform is the reduced time-to-market of SoC products through 

concurrent hardware/software design.

• Architecture Analysis

To increase the chances of first-time silicon success, a system must be 

thoroughly controlled at each step of the design flow against the real-time 

constraints stated in the initial system definition. An architecture exploration 

allowing system performance analysis and verification will fulfill this

requirement. The timing information is often essential in such analysis. 

System architects and RTL designers seek constantly a better solution for 

the architecture exploration at an earlier SoC design phase. For this, TLM 

offers a favorable approach by providing the possibility to explore a system 

architecture shortly after the system specification is completed. Depending 

on the user needs, either the untimed TLM inserted with functional delay or 

the timed TLM can be used for this purpose. 

Through an earlier architecture analysis, any system optimization or 

modification could be handled in time- and cost-efficient way. Besides, it 

helps to improve the design consistency between hardware and software

teams since they are both founded on the same TLM architectural model.

• Functional Verification 

Functional verification is intended for assuring the compliance of a given 

component or system implementation with its corresponding functional

specification. RTL models of the design-under-test are analyzed in a 

functional verification environment by various test scenarios. These test 

scenarios are developed by verification engineers referring to the paper 
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specification. Most of the time, the engineers need to “manually” determine

the expected results of each scenario. 

In fact, TLM is the actual functional specification of a component or 

system. More precisely, TLM is the executable specification of a given

design that captures the intended behavior perceived by end-users, i.e. 

architectural view; but not the implementation details of micro-architectural

view. Thus, TLM can replace the manual process undertaken by verification

engineers to generate the expected results of test scenarios as the golden 

reference for functional verification. 

Not only is TLM platform used for developing the reference output of 

test scenarios, it is also reused to conduct functional verification of RTL

models with the same test scenarios. The outcomes of the RTL functional 

verification will be compared to the reference output generated by TLM for 

analyzing and verifying the design behavior. 

As a result, TLM can really save the verification team a huge amount of 

working time. In addition, it aligns their job constancy with those of 

software and hardware design teams through referring to the same TLM 

platform.

6. CONCLUSION

Concisely, TLM plays the role as the unique reference for different teams

all the way through the SoC design cycle. Such idea of centralized reference 

is depicted in Figure 2-9. 

Not only is TLM a reliable methodology to face SoC design bottlenecks,

it is essentially the single reference that puts into effect a “contract” among

the different teams to achieve three durable objectives:

• Work consistency across various teams.

• Rationalization of modeling efforts. 

• Cross-team communication and interaction. 

In conclusion, the ultimate goal of TLM is leading the SoC industry to a 

cost- and time-efficient SoC project management in the long run. 
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Figure 2-9. TLM as Unique Reference Model 
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Abstract: The TLM concept and methodology are attainable through an implementation 

founded on the appropriate system level modeling language. Among the 

abundant choices of system level languages, we have adopted SystemC as our 

modeling vector at the transactional level for SoCs. This chapter pulls together 

our development work to date as a concise illustration of the TLM modeling

techniques with a particular focus on SoC communication. 

Key words: modeling environment; system level modeling language; SystemC; modeling 

API; layered approach; core TLM interface; TLM protocol; TLM IP; 

transaction; initiator; target; interconnect. 

1. INTRODUCTION

After discussing extensively the concept and the methodology of TLM in 

Chapter 2, the current chapter will deliberate on the techniques employed to 

support modeling of communications based on the TLM methodology. The 

modeling of IP behavior at abstraction levels defined in Chapter 2 is not in 

the scope of this chapter. 

Following our research based upon SystemC 2.0, a good understanding 

of the TLM abstract level was acquired as explained in Chapter 2. 

Underpinned by this comprehension, we succeeded to develop our own 

TLM interface [1]. Our development results, demonstrating a good level of 

maturity, were contributed to the OSCI TLM Working Group, as a

significant part for the first OSCI TLM standard [2] delivered together with 

SystemC 2.1. This chapter discusses the TLM modeling techniques that we 

have been developing, including our most recent development work in line

with the official OSCI TLM standard.   
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To begin with, the modeling environment is introduced in terms of its 

modeling languages, requirements, and infrastructure. Once familiar with the 

environment, it is time to learn more about the Application Programming

Interface (API) of TLM modeling. Advanced descriptions cover modeling 

techniques for TLM initiator, target, and interconnect modules. Finally,

examples of TLM systems are illustrated, followed by a summary of the 

chapter.

Targeted readers for this chapter are modeling engineers interested in 

understanding the TLM internal view from the implementation perspective. 

For this reason, readers should already have their first exposure to C++ and 

SystemC constructs before tackling this chapter.

2. MODELING ENVIRONMENT 

The TLM modeling environment is a particular setting wherein TLM

models are implemented. An introductory section briefly discusses a list of 

high-level modeling languages, which are potential candidates to support 

TLM methodology. Requirements for adopting a given high-level modeling 

language in the semiconductor industry are also highlighted. Among all the 

potential candidates, we have chosen SystemC as the implementation 

language for TLM, covering the development environment and modeling

infrastructure. Explanations will be given to justify our choice of SystemC. 

2.1 System Level Modeling Languages 

2.1.1 Brief Overview

Pressurized by the ever-increasing system complexity, electronic system 

designers have been struggling hard for years trying to raise the level of 

abstraction. Since the early 1990s, several proposals of modeling languages 

for “system-level” design were initiated. These proposed languages can be 

categorized into three families as follows:

1. Hardware-oriented Languages. Most common examples are VHDL 

or Verilog. As such, these languages offer modeling primitives for 

hardware design. They are however inconvenient for describing

software parts of a SoC.  

2. General-purpose Programming Languages. The most representative

example of this family is C-language. Such languages are suggested 

from the perspective of software. They rarely offer a full support for 
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hardware data types and constructs such as concurrency. Again, this

family will not be a good choice to describe a complete system. 

3. Proprietary C-based Languages. These are some sorts of hybrid 

languages with specific constructs to model SoCs. They are either 

costly proprietary languages sold by CAD vendors or limited versions

reserved for academic purposes. A handful of examples include 

HardwareC [3] and SpecC [4].  

Despite their initiatives, some shortcomings of these modeling languages

have hindered their attempts to raise the level of abstraction. The first two

families employ heterogeneous co-simulations, which are often inefficient in 

terms of simulation speed. Proprietary languages in the third family oblige

users to obtain a complete tool suite, including compilers and debuggers, for 

modeling a system. Listed below are disadvantages due to such obligations: 

1. Long learning curve for mastering each specific tool suite.

2. Difficult to exchange models between different teams because of 

license issues and tool suite installations. 

3. High cost owing to license fees required for model development and 

simulation. 

4. Uncertainty of support for languages coming from research projects. 

2.1.2 Requirements for Industrial Adoption

An appropriate candidate of system level modeling language must fulfill

certain conditions required by the semiconductor industry. Collected below 

are the requirements for the industrial adoption of such languages: 

1. Single language for hardware and software modeling in order to

achieve high simulation speed.

2. Concurrency for modeling various processes running in parallel

within a system.

3. Reactivity for modeling reactive systems sensitive to events or signal 

changes.

4. Distributiveness for allocating a system simulation on different 

workstations so that its sub-systems can be simulated in parallel for 

reaching higher simulation speed.

5. Timing for modeling the system micro-architecture information

whenever appropriate and necessary.

6. Data types for specific hardware and software modeling requirements.

7. Tool support from a wide variety of CAD tool vendors. 

8. Transparent model sharing between different teams or even 

companies.

9. Short learning curve for mastering the language. 
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The modeling languages introduced in the previous section fail to prove 

themselves in fulfilling all of these requirements for industrial adoption.

They only support part of the technical requirements or use a business model 

with very restrictive constraints for model development and exchange.  

2.2 Our Journey to SystemC 

After investing some efforts in trying out several proprietary languages,

we started our research work on other languages with high potential to raise 

the level of abstraction for system level design.  

• C/C++ Programming Language

The first attempt was made on pure C/C++ programming language. To 

model a complete system in C/C++, a set of primitives must be employed in 

order to implement the necessary hardware-related data types. We were 

bound to implement our own simulation kernel, which was able to suspend 

and resume POSIX1 threads that modeled concurrent processes defined in a

system. In fact, the major drawback of this approach was exactly the

implementation of such simulation kernel that was too specific for a given 

application. Whenever there was a change in the number of processes, the

simulation kernel must be updated. System models and simulation engines 

were nevertheless tightly coupled. The recurrent changes of the simulation 

kernel made it extremely difficult to identify and fix bugs in the C/C++ 

implementation. 

• Synchronous Languages

Slightly wedged by the first attempt, we then quickly shifted our effort to 

synchronous languages such as Esterel [5] or Lustre. The objective of 

experimenting Esterel was to understand how a synchronous language with 

well-defined semantics and concurrency support could really benefit circuit 

modeling at system level. Appealing advantages were natural support for 

concurrency as well as strong connection to methods and tools for formal 

verification. Unfortunately, significant downsides did exist. The learning 

curve of Esterel was unusually long due to the “cultural shock” that users

must overcome in order to be acquainted with such novel paradigms. Our 

research concluded that synchronous languages were not appropriate entry

points for system level design. Today, we seriously consider them as well-

founded intermediate representations for applying formal methods, which

can be automatically generated from another description. A research project 

1  Portable Operating System for unIX (OS, IEEE 1003, ISO 9945, PASC, UNIX). 
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is currently studying the role of Lustre in formal verification. Results

obtained to date in this research are presented in Chapter 5.   

• System Verilog 

Our next brief stop was System Verilog [6], an extension to the hardware

description language, Verilog. This was a high-level language specifically 

oriented to system modeling and verification. It supported linking to

externally defined C functions but not the C++ coding styles. Since it was an 

extension to Verilog, System Verilog could naturally handle clock-based 

modeling without much difficulty. However, it reached some limitations in 

the transactional level modeling. The most obvious problem was that System 

Verilog was too close to a hardware-based modeling language. It lacked 

certain capabilities to handle some aspects of higher-level modeling, for 

instance, abstract data types were not well supported. Furthermore, users of 

System Verilog were typically those “extended” from Verilog, i.e. they

might tend to model something too close to RTL models.

• SystemC

After a series of different attempts, we finally reached the long sought-

for destination of system level design: SystemC [7]. With the advent of 

SystemC 2.0, a hardware/software modeling foundation based on a single

language was no more a dream. SystemC adopts an object-oriented approach

that builds a set of classes on top of C++. The essence of SystemC lies in the 

availability of hardware primitives together with a simulation kernel. With 

such features, SystemC is able to support multiple abstraction levels and 

refinement capabilities ranging from high-level functional models to low-

level timed, cycle-accurate, and RTL models. Various means are provided to

represent communication protocols and channels in high-level modeling. In

addition, a help library is made available to assist users with signal and 

timing details in low-level modeling. SystemC holds all of the C++ operator 

overloading and pointer capabilities. Therefore, software engineers should 

feel very comfortable to work with SystemC where the job is mostly done in 

C++. Since it is a C++ based approach, SystemC offers debugging abilities 

using classical debuggers such as GDB. 

All through our research efforts, we have concluded that an efficient 

hardware/software system modeling must entail:

1. support for hardware and software primitives;

2. availability of a simulation kernel;

3. dependence on standard C++ compilers.

SystemC, respecting all requirements above, has come into prominence

as the most appropriate solution for raising the abstraction level to 

accommodate system level design. We have therefore opted for SystemC as 

our modeling vector for SoCs at the transactional level. After implementing 
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our first TLM interface based on SystemC 2.0, we are currently aligning our 

development work in accordance with the first OSCI TLM standard and 

SystemC 2.1. 

2.3 Development Environment 

TLM development environment should support modeling engineers with

high efficiency in the development, debugging, and integration of TLM SoC 

models. We strongly recommend an environment that is independent of any 

proprietary languages or tools. If this can be respected, the minimum 

requested tool suite will simply comprise a text editor, a C++ compiler, and 

a debugger. Modeling engineers can of course choose a more user-friendly 

environment such as an integrated environment including an editor, a 

compilation chain, and a debugger.

TLM models developed independent of any tool grants the capacity of 

recompiling codes on different workstations, using different compilers for 

code compilations, and running codes on different operating systems.

Indeed, such capacities help to verify the robustness of TLM models.

Different workstations, compilers, or operating systems have different 

behavior and features. As a result, TLM models can be verified in various 

manners and thus fewer characteristics will be untested or missed. This is a

real advantage to improve the verification process of SoC.

To gain higher efficiency, TLM models are designed in such a way that 

any EDA tools that support SystemC can exploit them. Among a wide 

variety of EDA tool features, listed below are essential to improve platform 

assembly and debugging:

1. Automatic assembly of system netlist. In a component-based 

approach, models are usually available as off-the-shelf components 

with well-defined interfaces. Instantiating and binding a huge number 

of such components at the top level is a painful and error-prone task. 

This tricky situation can be avoided by using generic descriptions

based on the SPIRIT2 standard that will be discussed in Chapter 7.

2. System level debugger. General debuggers such as GDB offer a 

limited support for multi-thread executions. Such debuggers are

typically competent in micro debugging but quite restrictive in system g

level macro debugging. A SystemC-based TLM simulation counts

largely on synchronization points to trigger switching from one

process to another. It is therefore very useful to have a system level

2  Structure for Packaging, Integrating and Re-using IP within Tool-flows. 
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debugger that provides advanced features such as stepping through 

the global execution, visualization of process activations and their 

dependencies on system events, browsing of design hierarchy,

definition of instance-related breakpoints, etc.  

3. Transactional visualization. Observing and analyzing transactions of 

a system simulation is another key point to assist model developers 

and users in understanding dynamic system features. In addition, it 

serves as a handy visual aid for debugging a system. 

2.4 Modeling Infrastructure 

Developing new models at TLM abstraction signifies the first step 

towards system level design and verification flow. Naturally, the reusability

of such models becomes the key factor for adopting the TLM approach.  

The TLM modeling infrastructure has therefore been developed to help

increasing model reuse. This infrastructure is in charge of source code 

organization and model library management. Users are encouraged to stick 

to the same organization suggested by the infrastructure in creating their 

models, which helps to avoid code duplication and facilitate model reuse. A

brief description of TLM modeling infrastructure follows.  

TLM modeling infrastructure defines SoC design as a project that refers 

to IP models. Each project is hierarchically organized in several directories 

listed below:

• Component. Contain all TLM component models implemented for a 

given project. Each component holds its own directory, which can be

hierarchically organized and may have inter-project dependencies.  

• Platform. Represent the location where components and/or test benches 

are instantiated for creating the top netlist of a design. 

• Software. Keep embedded software codes to be run on the TLM

simulation platform of a given project. 

• Devkit. Contain simulation facilities such as transaction recorders or 

helper functions that are not directly parts of TLM models, but useful for 

the project in certain perspectives or context. 

• External. Store definitions of external libraries and tools required by the 

TLM simulation. These definitions may not strictly be related to TLM 

models. For example, a library containing a processor model is referred

by a TLM platform to instantiate an ISS yet it remains an external item. 
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• Protocol. Collect communication protocols that are implemented on top

of TLM interfaces to model specificities of real interconnects like buses

or network-on-chip.

A root project provides a starter kit comprising TLM development kit 

definitions, makefile generators as well as commonly used protocols,

components, and platforms. Through declarative dependency files, a given

SoC project can refer to any components, devkits, or protocols defined in

another TLM project. Therefore, previously defined parts can easily be

reused in the platform of any projects. 

Regarding the TLM code-build, makefile generators provide facilities to 

generate an object sub-tree automatically. Such object sub-tree is able to

handle specificities of operating systems, compiler versions for generating 

TLM platforms, and SystemC kernel versions (OSCI3 or provided by a third 

party). 

3. MODELING API 

The current section gives an in-depth description of the modeling API at

the transactional level. The discussion will begin with the overview of the 

layered approach, which separates a functional IP model clearly from its

communication interfaces that exchange data with other models.   

3.1 Layered Approach 

The TLM layered approach offers high-level primitives tailored for the 

specific modeling needs of modeling engineers. In many cases of system

modeling, several communication protocols of different semantics and 

content are required. Some cases may only require a simple communication

protocol that requests a point-to-point connection to pass data from an 

initiator to a target. On the other hand, certain cases may need a more 

complex protocol that supports the following features:

1. complex data structures with address, data, byte-enable information;

2. transaction routing onto the communication medium;

3. score-boarding capabilities for verification purposes. 

To address such varying modeling requirements, the TLM layered 

approach has defined three complementary layers listed below: 

3  Open SystemC Initiative. 
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2. Protocol layer. 

3. IP layer.

These layers are structured in a similar way as those in the network 

applications. The corresponding implementation details are provided in the 

coming sections. 

3.1.1 Core TLM Interface Layer 

The first OSCI TLM standard defines a core TLM interface, upon which

TLM protocols and IPs can be developed. According to the SystemC

terminology, an interface denotes the specification or convention of some

communication services. These services are implemented in communication

channels. IP modules, which are aware of the communication services

defined by the interface, can then make use of the services via 

communication ports. 

The core TLM interface layer is the foundation of TLM methodology. It 

defines a transactional level interface, and declares the related transactional 

level ports accordingly. Indeed, such layer is the minimum interface 

definition required for modeling a SoC at the transactional level. It gets 

ready a communication API that is capable of transporting a transaction

from an initiator to a target module.

3.1.2 Protocol Layer

Various communication protocols can be defined on top of the core TLM 

interface layer. These protocols rely fully on the core TLM interface to 

transfer a transaction between two different points in a system. The 

semantics of the transactional transfer are refined by these protocols in terms 

of transaction payload and blocking/non-blocking transfer.  

As explained in Chapter 2, TLM modules communicate through ports. 

Initiator ports are defined as a specialization of sc_port on the master side,

while target ports are defined as a specialization of sc_export on the slave

side. For each TLM protocol, a set of methods is defined. These methods are 

also known as convenience functions. They are specified in the form of 

interfaces in the C++ abstract class. These methods hide the complexity of 

the core TLM interfaces and thus they make sense to the end users. The 

implementation of these methods must be done in two areas: 

• Initiator Port. For initiator ports, the implementation of these methods is

1. Core TLM interface layer.

done once and for all by the protocol developer. It allows translating 
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interface calls.

• Target Module. For target modules, the core TLM interface is

implemented in a target base class that is done once and for all by the

protocol developer. This implementation calls the methods of the

protocol interface implemented in each target module. Therefore, the IP 

developer is responsible for the right implementation of the convenience 

functions. Since target modules inherit from the protocol interface, the 

compiler will definitely check for the existence of the implementation of 

these convenience functions.

The examples of the TLM protocols developed by our efforts include:

1. TLM_TAC.

TAC stands for Transaction Accurate Communication. It specifies a

very abstract bus model with a blocking read/write API. It uses the 

bidirectional blocking core TLM interface, tlm_transport_if.

2. TLM_STBUS.

This is a model of the STBus4 protocol at the packet level. This

protocol definition includes the representation of all opcodes and the 

associated information of STBus. It uses the unidirectional blocking

core TLM interface, tlm_blocking_put_if, and the non-blocking core 

TLM interface, tlm_nonblocking_put_if.

3. TLM_SYNCHRO.

A TLM protocol particularly developed for purely functional

simulations. System synchronizations are modeled without using
sc_signal. It uses the unidirectional blocking core TLM interface,
tlm_blocking_put_if.

3.1.3 IP Layer 

TLM IPs are modeled on top of a TLM protocol layer as functional 

modules. Communications between TLM IPs are established through the 

communication API defined in the protocol interface. 

A given TLM IP can instantiate as many ports as required as long as it is

in accordance with the underlying protocol. Several ports based on the same 

protocol could be instantiated by an IP, for instance, a dual port memory IP. 

4  STMicroelectronics proprietary on-chip bus protocol.

user-level operations (e.g. read or write) into the appropriate core TLM                    
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Each IP is aware of a set of protocols that it can support. An example of an

IP supporting multiple protocols is the protocol converter. This IP receives

transactions from a sub-system built on a particular protocol. It then converts

the received transactions into another protocol, and reinitiates them to 

another sub-system as new transactions based on this protocol.  

Figure 3-1 illustrates the idea of the TLM layered approach in SystemC. 

Figure 3-1. TLM Layered Approach in SystemC 

3.2 Definition of TLM Protocol 

To create a new protocol on top of the core TLM interface layer, some 

particular definitions are required. First, a suitable core TLM interface must 

be chosen according to the communication semantics. Then, the protocol 

between the initiator and the target is defined for two aspects: exchanged 

information and protocol interface. 

3.2.1 Appropriate Selection of Core TLM Interface 

The right type of the core TLM interface must be chosen according to the 

protocol to be implemented. In a given design, one or more protocols can be

implemented. Each protocol can either be unidirectional or l bidirectional.

The bidirectional protocol makes use of the blocking bidirectional core 

TLM interface. Such interface couples the request and the response of a 

transaction in a blocking call:

• request is a parameter of the function call; 

• response is the return value of the function call. 
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The unidirectional protocol makes use of the blocking or/and non-

blocking unidirectional core TLM interface. Such interface is used in cases

where:

• initiators send requests and get responses;

• targets get requests and send responses. 

The unidirectional interface allows sending or receiving one or more 

transactions. If it is a blocking interface, the calling process can be

suspended in the interface implementation until completion. If it is a non-

blocking interface, the calling process cannot be suspended and thus it may 

fail.

The untimed TLM protocol can be either bidirectional or unidirectional 

depending on what the role of the protocol is. For example, it is preferably to 

use the bidirectional interface for an untimed TLM protocol based on the 

read/write. Certain untimed TLM protocols can use the unidirectional 

interface, for instance, a protocol that sends the broadcast transaction 

without waiting for any response.

Since the timed TLM protocol implements timing notions, such as pipe 

effect, the unidirectional interface is naturally a better choice. 

3.2.2 Protocol Definition

There are two important aspects in defining a TLM protocol:

1. Definition of exchanged information.

2. Definition of protocol interface. 

• Definition of Exchanged Information 

This aspect defines the information to be exchanged between an initiator 

and a target following a given protocol. Two parts are to be defined:

a) Request: represent information transmitted by an initiator to a target,

e.g. address, data written, byte-enable, etc.

b) Response: represent information returned by a target to an initiator, 

e.g. status, data read, error, etc. 

• Definition of Protocol Interface

This aspect defines the methods or functions of a given protocol, which is 

an interface that makes sense to users and hides the complexity of the 

core TLM interface.  Defining the protocol interface has two objectives: 

a) On the initiator side, it provides a user-friendly interface. For 

example, it defines the read/write (address, data) functions that are in

charge of constructing the request structure and invoking the core 

TLM interface. These functions represent the different operations of 

the protocol. Depending on the specific information to be transmitted 



TLM Modeling Techniques 69

by the initiator to the target, these functions can have different 

signatures.

b) On the target side, the core TLM interface is implemented. In this 

implementation, the protocol interface function is called according to 

the content of the request structure. For bidirectional interfaces, the

implementation of the core TLM interface elaborates and returns the

response structure.

3.2.3 Example of TLM_TAC Protocol

This section describes the definition of the TLM protocol through the

code examples of our in-house protocol, TLM_TAC.

• Choosing the Appropriate Core TLM Interface

The TLM_TAC is a protocol defined at the untimed level. It is a very C

abstract high-level model of the interconnect. Therefore, the details of the 

communication are not within the scope of this protocol. Moreover, this 

protocol aims at high-performing simulation. Pulling all these

requirements together, the TLM_TAC needs the bidirectional blocking C

core TLM interface. 

• Defining the Exchanged Information

The information exchanged in the TLM_TAC includes: C

a) Request: address, data, byte-enable, opcode, access mode, 

tac_metadata, error_reason, etc. 

b) Response: tac_status, data, tac_metadata. 

• Defining the Protocol Interface

Five public methods are defined for the TLM_TAC protocol interface. C

Code examples follow. 

virtual tac_status read (const ADDRESS &address,

         DATA &data, 

         …)=0; 

virtual tac_status write (const ADDRESS &address,

          const DATA &data, …)=0; 

virtual tac_status read_block (const ADDRESS &address,

            DATA *block_data,  

            const unsigned int number, …)=0; 

virtual tac_status write_block (const ADDRESS &address,
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             const DATA *block_data,  

             const unsigned int number, …)=0; 

virtual tac_status get_target_info (const ADDRESS &address,

              tac_metadata &metadata, …)=0; 

4. INITIATOR MODELING 

An initiator is a TLM module that implements one or more processes,

which are capable of generating transactions to the interconnect or channel

module. The initiator module can be implemented either as the software 

running on a processor or as the dedicated hardware. 

The current section describes the general working mechanism of TLM 

initiators through the code examples of our in-house protocol, TLM_TAC.

For any kinds of implementation, an initiator is always modeled as a 

SystemC module with the following characteristics: 

1. declare processes using SC_THREAD and/or SC_METHOD to model its

behavior;

2. instantiate one or more communication ports that are to be bound to 

communication channels.  

The code example quoted hereafter illustrates how to model these two

characteristics in a TLM initiator module. Note that this example is a partial

version that shows only the essential coding parts. 

class traffic_generator :

 public sc_module, 

 public virtual tlm_module  

{

public :

 // Module ports

 tac_initiator_port<ADDRESS_TYPE,DATA_TYPE> initiator_port; 

 SC_HAS_PROCESS(traffic_generator);

 // Constructor 

 traffic_generator(sc_module_name module_name);

 // Traffic generator process 

 void traffic_generator_func();

};
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traffic_generator::traffic_generator(sc_module_name module_name) : 

  sc_module(module_name),

  initiator_port(“initiator_port”)  

{

  // Traffic generator thread

  SC_THREAD(traffic_generator_func); 

}

As the next code example on the following page will demonstrate, a 

process within an initiator initiates the communication by: 

1. employing the convenient functions of the protocol interface in the

initiator port;  

2. or creating the objects of tac_request and tac_response, and calling

the transport function of tlm_transport_if implemented in the target.

A process that generates transactions should be declared by an SC_THREAD

if it encounters some wait statements. From the perspective of modeling, it is 

recommended to define the granularity of transactional transfers according 

to the expected accuracy. For example, a video IP modeled at the frame level 

should have the corresponding transfers completed at the frame level too to

avoid irrelevant multiplications of pixel transfers. 

If a processor model is integrated, it is desirable to distinguish between 

regular and debugger accesses. Thus, it will be wise to instantiate a second 

initiator port reserved for debugger accesses. This port can be connected to

either a regular channel or a debugger channel with backdoor accesses.

In certain cases, implementing processes that initiate communications on 

one or more channels could be necessary. Our suggestion is to implement as 

many ports as defined in the IP architecture. Model developers should also

handle the transaction management in such a way that any premature 

deletion or edition of the transferred data is avoided. A good practice is to 

create the thread that generates transactions first, followed by allocating and 

owning the data structure.

traffic_generator :: traffic_generator_func()

{

//code skipped

ADDRESS_TYPE addr = 0x10000; 

DATA_TYPE data_write = 0x10, data_read = 0; 

tac_status status; 

tac_error_reason error_reason;
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//write data at system address addr

status = initiator_port.write(addr, data_write, error_reason);

if (!status.is_ok())

  ERROR_REPORT(2,

       “\t%s: ERROR Write data %d at 0x%x: %s T:%9.9f\n”,

       name(), 

       (int)data_write, 

       (int)addr, 

       error_reason.get_reason().c_str(), 

       (float)(sc_time_stamp().to_seconds()) 

       );

else

  DEBUG_REPORT(3,

       “\t%s: Write 0x%x at 0x%x done T:%9.9f\n”,

       name(), 

       (int)data_write, 

       (int)addr, 

       (float)(sc_time_stamp().to_seconds()) 

);

//read at system address addr stored in data_read 

status = initiator_port.read(addr,data_read,error_reason); 

//code skipped

}

5. TARGET MODELING 

5.1 General Guidelines 

A target is a TLM module modeled by implementing a SystemC module 

that takes charge of the IP behavior. The principles of implementing TLM

target modules are listed below: 

1. Model all registers in a bit-accurate manner. 

2. Model IP behavior at the functional level without any micro-

architectural details.

3. Implement the protocol interface. 

The core TLM interface should also be implemented. To simplify the 

work of IP developers, the core TLM interface could be implemented in a

base class. In target modeling, developers should focus on implementing the
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communication service and the behavior of the target modules. The next two

sections discuss these two aspects in details.

5.2 Interface Modeling 

A base class is implemented for each protocol for the sake of simplicity. 

Such base classes provide the default implementation of the core TLM

interface that fits or makes sense for the corresponding protocols.

Consider the TLM_TAC protocol that is aware of Read and Write C

opcodes. The steps of implementing the transport function in the TLM_TAC

base class are as follows:

1. extract opcodes and various parameters from incoming transactions; 

2. call the appropriate protocol interface for Read and/or Write, which

are to be implemented in the leaf module.      

Collected below is the code example that shows how the default 

implementation of the transport interface is accomplished. 

typedef tac_request <ADDRESS, DATA> request_type

typedef tac_response <DATA> response response_type

template <typename ADDRESS, typename DATA>

 tac_response <DATA>

 tac_slave_base <ADDRESS, DATA> :: transport (const request_type& 

                      request) 

{

 int number = request.get_number(); 

 response_type response(number);

 switch(request.get_access())  

 {

  case READ:

  if (number > 1)  

   { 

   DEBUG_REPORT(4,

        “\t%s: Receive read block request T:%9.9f\n”, 

        m_slave_name.c_str(),

        (float)sc_time_stamp().to_seconds()); 

   response.set_data_ptr(request.get_data_ptr()); 

   response.set_status(read_block 

            (request.get_address(), 

           response.get_data_ptr(),

           number, 

           request.get_error_reason(), 
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           request.get_block_byte_enable(),

           request.get_block_byte_enable_period(), 

           request.get_access_mode(),

           request.get_port_id()) 

           ); 

   }

  else  

   {

   DEBUG_REPORT(4,

        “\t%s: Receive read request T:%9.9f\n”, 

        m_slave_name.c_str(), 

        (float)sc_time_stamp().to_seconds()); 

   response.set_data_ptr(request.get_data_ptr());

   response.set_status(read 

            (request.get_address(),

           *response.get_data_ptr(),

           request.get_error_reason(), 

           request.get_byte_enable(),

           request.get_access_mode(),

           request.get_port_id()) 

           ); 

   }

  break;

  case WRITE: 

  if (number > 1)  

   {

   DEBUG_REPORT(4,

        “\t%s: Receive write block request T:%9.9f\n”, 

        m_slave_name.c_str(), 

        (float)sc_time_stamp().to_seconds()); 

   response.set_status(write_block 

            (request.get_address(),

           request.get_data_ptr(),

           number,

           request.get_error_reason(), 

           request.get_block_byte_enable(),

           request.get_block_byte_enable_period(), 

           request.get_access_mode(),

           request.get_port_id()) 

              ); 

  }

  else 

   { 
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  DEBUG_REPORT(4,

       “\t%s: Receive write request T:%9.9f\n”,

       m_slave_name.c_str(),

       (float)sc_time_stamp().to_seconds());

  response.set_status(write

           (request.get_address(), 

          request.get_data(),

          request.get_error_reason(),

          request.get_byte_enable(), 

          request.get_access_mode(), 

          request.get_port_id())

          );

  } 

 break; 

 case GET_TARGET_INFO: 

  DEBUG_REPORT(4, 

       “\t%s: Receive get_info request T:%9.9f\n”, 

       m_slave_name.c_str(), 

       (float)sc_time_stamp().to_seconds());

  response.set_metadata(request.get_metadata()); 

  response.set_status(get_target_info

           (request.get_address(), 

          response.get_metadata(),

          request.get_error_reason(), 

          request.get_port_id())

          );

 break; 

 default: 

  string msg(“Unknown TAC access type”);

  ERROR_REPORT(2,

       “\t%s: %s T:%9.9f\n”, 

       m_slave_name.c_str(),

       msg.c_str(), 

       (float)(sc_time_stamp().to_seconds()));

  response.get_status().set_error();

  request.get_error_reason().set_reason(msg); 

break;

 }

return response;

} 

}
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Through such default implementation of the tlm_transport_if interface

in the protocol base classes, model developers must provide an 

implementation of the protocol interface in target modules. An example of 

implementing a read method in a simple timer is given hereafter.

//timer read access

tac_status

tac_timer :: read(const ADDRESS& address, 

        DATA& data, 

        tac_error_reason& error_reason, 

        const unsigned int byte_enable,

        const unsigned int mode, 

        const unsigned int target_port_id)

{

tac_status status;

switch (address)

{

case TIMER_LOAD: 

  data = m_timer_load; 

  break; 

 case TIMER_VALUE: 

  data = m_timer_value;  

  break; 

 case TIMER_CONTROL:  

  data = m_timer_control; 

  break; 

 default:

 ERROR_REPORT

(2,

“\t%s: Error, cannot read at address 0x%lx T:%9.9f\n”, 

name(),

address,

(float)(sc_time_stamp().to_seconds()));

 error_reason.set_reason(“Input read address out of range”); 

 status.set_error(); 

 return(status);

}

 status.set_ok(); 

 return(status);

}
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The basic mechanism described above provides communication services

for those target modules using a single TLM protocol. If this default 

mechanism is insufficient, the transport function defined in the protocol 

base class must be overridden to provide implementations that are more

specific. In such cases, model developers will have to implement the
transport function in the leaf module. 

Target modules of multi-protocol support must instantiate at least a target 

port and inherit from target base classes supported by each protocol. In 

addition, these targets have to implement the methods of each protocol

interface. Compilers must be able to distinguish the available alternatives 

according to the signatures of the various functions. 

From the perspective of modeling, IP models should not include any 

system address in order to allow remapping and multiple instantiations of the 

modules. Registers can be identified by their offset addresses with respect to 

the beginning addresses of IP modules. For an IP connected to multiple

channels of the same protocol, it is unnecessary to instantiate multiple

interfaces. Instead, simply use the target port ID to distinguish the different

incoming transactions from the channels.  

For a complex IP, the manual modeling of accesses to its numerous

registers could be a dull and error-prone task. This is more likely to happen 

if the modeling is not done in a systematic manner. An adverse consequence

of such is the run-time error. This particular modeling code piece, however,

can be automatically generated if IPs are specified using a strictly regular 

structure. Such regular structures can be obtained by either parsing

specification documents or providing intermediate register representations 

like those of SPIRIT format. In that case, register structures are loadable

from files to provide fully dynamic register representations, or to generate

necessary codes to be compiled with IP models in a static approach. The first

option of parsing specification documents is certainly more flexible. In spite

of this, it has a negative impact on the overall simulation speed. This option 

must therefore be considered with meticulous care.

A very common question about modeling target IPs is the amount of 

ports to be instantiated in TLM models. At the transactional level, an IP is

normally modeled in an abstract way that does not match its actual number 

of ports or bus interfaces as in its RTL model. It will not raise any issue as

long as the expected behavior can be modeled correctly. For this matter, we 

recommend instantiating multiple ports: 

1. if it is necessary to distinguish the nature of the ports of the incoming 

transactions, e.g. arbitration purposes;

2. if IPs are connected to several channels that represent several buses 

on the actual chip.
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If neither case above is encountered, a single target port will be sufficient 

to collect all of the incoming transactions for a target module.   

5.3 Behavior Modeling 

Once the communication service of a target module is implemented, 

model developers should proceed to the implementation of the IP behavior.

Two aspects must be handled carefully: 

1. side effects of writing or reading data into/from IP registers; 

2. ability to trigger some potential processes when registers are properly

programmed.

An important reminder here: IP behavior must be modeled at the 

functional level for untimed models without any micro-architectural details. 

No communication-specific processes are implemented in target modules.

The IP behavior can nevertheless be implemented by SC_METHOD or SC_THREAD

as in any standard SystemC models. Certain complex IPs with both the slave 

and master roles, such as a video coder-decoder (CODEC), may also 

instantiate initiator ports to read or write data from/into memories. 

6. INTERCONNECT MODELING 

An interconnect or channel is a structure responsible for establishing 

communications among TLM modules. It can be modeled in various 

manners at the transactional level depending on the expected accuracy as

well as the model used on the final platform. The minimum features of a

TLM interconnect are the abilities to:

1. decode addresses;

2. route a transaction from an initiator to a target module. 

This approach is sufficient to model untimed modules for fast functional

simulations during the embedded software development. It is obviously

insufficient for an architectural analysis. In that case, the topology (e.g.

nodes and links between nodes of a network-on-chip) of the interconnect 

module will have to be modeled along with its arbitration policy and 

potential delays. 

6.1 Interconnect Structure 

In the untimed TLM, an interconnect is modeled as a hierarchical

channel with communication ports and the implementation of one of the core 
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TLM interfaces. Depending on the communication purposes, communication 

ports of a channel can be arranged differently as: 

• Simple Transaction Router

If a channel simply routes transactions without considering arbitration, a 

single initiator port and a single target port will be sufficient. Each of 

these communication ports can be bound to one or more IP ports. Indeed, 

an initiator port and a target port of a router are centralized points to 

receive and transmit transactions collectively from all IP ports involved 

in the system communication. Figure 3-2(a) illustrates the interconnect 

structure of a transaction router. However, it could be useful to offer 

multi-port routers to facilitate an automatic netlist generation (see

Chapter 7).

• Arbiter Channel 

A sophisticated channel with arbitration ability is typically implemented 

for cases where the system topology and port notions are required for 

handling arbitration. In an arbiter channel, an initiator port or a target

port will be particularly assigned for each IP port involved in the system 

communication. The interconnect structure of an arbiter is depicted in 

Figure 3-2(b). 
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Figure 3- . Interconnect Structure

On top of having a router implementation for a given channel, it is 

sometimes useful to have another implementation closer to its RTL model. 

This can be achieved by having as many communication ports as there are in

the real hardware, which is exactly the second case described in Figure 3-2.

With both implementations, the channel can either employ a simple routing

procedure, or implement an arbitration policy that uses the slave port ID to

distinguish incoming transactions. Note that the latter option requires 

implementing additional processes that may influence the overall simulation

speed.
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If TLM platforms are applied for an architectural analysis, it will be

necessary to provide more details for the interconnect structure. In that case, 

the TLM interconnect must support all the information that may affect the

system performance in terms of timing, bandwidth, arbitration policy, etc.

The TLM model of a network-on-chip should instantiate the whole set of 

modules required to represent its topology, the different paths of the network 

between initiators and targets, and the different arbitration policies hosted by

the interconnect nodes.

6.2 Examples of Interconnect Implementation 

6.2.1 Router Implementation

Let us consider the implementation of the simplest case for a router with 

only an initiator port and a target port. When such a router is instantiated for 

a given system, it loads the system address map from a file that describes the

address ranges associated with each port of all the targeted system IPs. The 

data structure created through this file loading will serve the transactional

routing of the system later on. 

From the angle of an initiator, a router is regarded as a target module. 

Therefore, the core TLM interface is implemented in the router. The 

minimum implementation of such lies in: 

1. correct extraction of the address from the transaction payload;  

2. exact information of address map to identify the right target module.  

Once the target module is identified, the router will propagate the 

transaction by invoking the core TLM interface, which is implemented in the 

target IP and bound to its target port.  

Since the semantics of such transactional transfer is a blocking/atomic

communication, no process will be needed in the router for transmitting the 

transactions.

6.2.2 Arbiter Implementation

For the functional part of the embedded software development, a TLM

arbiter channel is neither necessary nor recommended. The architecture 

analysis of a system, on the other hand, will find TLM arbiters of great help.   

An arbiter has all the features of a router channel as presented earlier. On 

top of the address decoding and routing abilities of a router, the arbiter must 

be able to reorder transactions according to a specific arbitration law.

Two types of implementation are available for enabling arbitration in an

interconnect module. First, arbitrate the initiator modules that generate the

requests for transmitting transactions. This approach may only have to
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implement the minimum number of ports in the arbiter channel, which is 

decided by the arbitration law according to the information located in the 

initiator ports of the requesting initiators. Second, arbitrate the target 

modules that attempt to access to the arbiter for passing transactions.

The arbiter must suspend the thread of an incoming transaction despite 

the nature of the arbitration policy. Such obligation permits other processes

to execute, and it allows other potential initiators to generate transactions 

too. Any pending transaction will be stored in a data structure.

Once all of the potential transactions are expressed, the arbitration 

mechanism will execute. This mechanism is implemented in another process 

within the arbiter and is notified by using a delta cycle delay. Consequently,

it guarantees that the arbitration will only take place after all the pending

requests are received.  

When the arbitration process executes, it applies the arbitration law to

select the transaction to be served, followed by the address decoding and 

transaction routing as what a simple router does. As soon as the transaction

service completes its job on the target side, the arbitration thread will send 

an event notification to release the suspended initiator process so that it can

continue its execution. 

7. EXAMPLES OF TLM SYSTEM 

7.1 Multimedia Platform: MPEG4 CODEC 

Our first example is the TLM model of an MPEG4 CODEC based on the

TLM_TAC protocol. This multimedia platform will demonstrate how 

efficient an architectural TLM simulation model can help the embedded 

software development and interactive debugging.

7.1.1 System Model

The MPEG4 CODEC platform employs a distributed multi-processing

architecture with two internal buses and four application-specific processors

(ASIP); distributed above which include the embedded software, a general-

purpose host processor managing the application-level control as well as 

seven hardware IP blocks. Consequently, there is a great deal of software

parallelism with explicit synchronization elements in the software. Each

processing block is dedicated to a particular part of the CODEC algorithm.
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The hardware and software are partitioned according to the complexity 

and flexibility required by the CODEC algorithm. All operators work at the 

macro-block level, i.e. the video unit for CODEC. Figure 3-3 illustrates the 

MPEG4 CODEC platform block diagram. 

Figure 3- . MPEG4 CODEC Platform Block Diagram

Listed below are the descriptions of the major CODEC system blocks:

• Multi-Sequencer (MSQ) 

This is the RISC processor for video pipeline management. It comprises

mainly firmware with a hardware scheduler particularly for fast context 

switches and process management. 

• Multi-Channel Controller (MCC)

MCC is a hardware block with the micro-programmed DMA. It arbitrates 

all the current requests from the operators and performs I/O with the

external memory. Scheduling is done per request where each request is a 

memory burst with a variable size. An I/O request is considered as a

single transaction even if it may take several cycles to execute.

• VLIW Image Predictor (VIP) 

This block is a mixture of hardware and firmware for performing the 

motion compensation. The firmware controls the VIP block while the 
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hardware handles the processing part with a special instruction set of 

very long instruction word (VLIW) type. This instruction-set is modeled 

for the CODEC TLM platform. 

• Encoder (COD)

COD is a pure hardware block that performs the difference between the

grabbed and predicted image, discrete cosine transformation (DCT), 

zigzag, quantization, and run/level coding.

Other system blocks on the platform include:

• CPG: camera processing and grabbing 

• BSP: bit stream processing

• HIF: host interface

• DCB: display and compositor block 

• HME: hierarchical motion estimator 

• REC: re-constructor block 

• DFO: digital filter 

In terms of the system behavior, the external processor posts commands

to the mailbox, HIF. The C-programmed MSQ will consider the posted 

command and take charge of the internal control of CODEC. Consequently,

the MSQ activates the different internal hardware or programmable blocks to 

perform the coding and decoding of the video flow by reading status 

registers and writing command registers for each block.

All of the operators are pipelined. They communicate with the system 

memory through a memory controller. This memory controller receives 

requests from the internal operators and generates transactions onto the top-

level bus for accessing to the system memory. It communicates with the

internal operators through well-identified input/output registers that contain

the values to be stored into and loaded from the memory.

The two internal channels on the platform, command and data channels,

serve for different purposes. For those modules that need to give access to 

their control registers, their ports are bound to the command channel; for 

those modules that handle data communication, their ports are bound to the 

data channel. The MSQ is a particular case since it has a double role: it 

generates read/write operations to control the system behavior, thus its 

command master port is connected to the command channel; it also initiates 

transactions to the memory, thus its communication port is bound to the data 

channel.
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7.1.2 Design Choices 

The obligation of being able to simulate the embedded software prevents

us from developing a pure functional and sequential circuit model. Each

computing block, for this reason, is modeled as a SystemC module with its

own processes as well as the associated synchronization elements. 

The MPEG4 CODEC platform is a multi-processor design composed of 

C-programmed modules, pure hardware blocks as well as mixed blocks of 

hardware and programmable operators. On this platform, there are three 

categories of specific modeling strategies as explained below.

• Software Block

The design relies much on the sequential aspects of the codes for MSQ,

BSP, HME, and VIP. All firmware is written in C. This enables the codes to 

be natively compiled on a workstation, and to communicate with the TLM 

models through an I/O library via simple stubs to call C++ from C. The

specific built-in instructions of the processors are modeled as C functions. A 

part of the C model is used directly for the ROM code generation using 

retargetable C cross-compilers. An ISS is integrated in the environment to

run the cross-compiled application software on the SoC host. The written 

software remains unchanged despite the nature of its environment, be it 

TLM or RTL simulations, emulation or application board.  

• Hardware Block

For each hardware block, a high-level model is written in SystemC. It is a 

functional, bit-true model with the representation of memory transactions. 

The internal block structure is not characterized. Instead, the input/output of 

the block, the system synchronization, and the internal computation at the 

functional level are modeled. The completed SystemC model is used as the 

reference for the RTL validation. 

Consider COD, the hardware pipelined with five operations: Delta, DCT, 

Zigzag, Quantization, and Run/Level. A FIFO is inserted among all of these 

operations. The computation is controlled by a pipelined finite state machine

(FSM) while a DMA manages the inputs and outputs. Indeed, the RTL 

model is fully representative of this architecture. Such a model normally

requires at least 3-men-months effort for a senior designer. On the other 

hand, the corresponding transactional model consists in the input data 

acquisition (grabbed and predicted blocks in our example), computational

results by a C function, and the resulted output. The gain is not only an 

easier and faster modeling, but also a much greater simulation speed.

Furthermore, the required effort is only about 1-man-week.  
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Mixed hardware/software blocks are modeled as a combination of the

two previous categories.

7.1.3 System Integration Strategy

Some features of the modeling environment applied in the MPEG4

CODEC platform are briefly discussed in this section. The discussion will

only focus on the fundamental aspects of our approach. 

The system synchronization of the platform is dual. First, the MSQ is in 

charge of the global control of the platform. It is responsible for activating

the coding/decoding tasks according to the current system status. A task will

be executed only if the relevant data is available, otherwise it will simply be

suspended. Several tasks may be activated at the same time through the 

internal pipeline of operations. The system synchronization is achieved by

writing/reading into/from the command and status registers of the different 

operators. Second, data exchanges between the operators and the memory

are blocking operations. The platform synchronization scheme ensures that 

an operator will resume its computation only when the previous transaction

is completed from the system point of view.

Data exchanges are modeled with arbitrary sizes in the platform with

respect to the semantics of the system data exchange. For instance, 

transactions between the camera and grabber are line-by-line image transfers

while transactions between MSQ and other operators are 32-bits wide.

7.1.4 Experiment Results 

The performance figures obtained for the MPEG4 CODEC platform in 

terms of its code size and simulation speed on different complementary 

environments are depicted in Figure 3-4. 

The modeling choices of IPs can bring a significant gain in terms of the 

model size. The code sizes of the RTL, TLM, and Firmware models of the

MPEG4 CODEC platform are compared in Figure 3-4. Note that TLM 

models are about 10 times smaller than RTL models. Obviously, TLMr

models are easier to write and consequently faster to simulate. Figure 3-4

also shows that TLM models manage to simulate 1400 times faster than r

RTL models on a SUN-Ultra10 workstation of 330MHz speed and 256MB

memory. Just consider the typical job of image coding to get the feel of this

speed-up in simulation: RTL models simulate a coded image in an hour but 

SystemC TLM models only need 2.5 second to do the same job!  

For the emulation of the MPEG4 CODEC platform, an ad-hoc co-

emulation transactional interface had been implemented through the C API 

before the Accellera SCE-MI interface [8] was made available on the 

• Mixed Hardware/Software Block
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Mentor Celaro hardware emulator. This interface provided both 

controllability and observability of the emulated design over the clock 

control, the memory and register load/dump as well as the built-in

programmable logic analyzer. For the hardware, synthesizable models were 

developed for the camera, the memory and several RTL transactors [8] 

translating a data packet from a transaction into a bus-cycle-accurate data 

exchange. For the software, the TLM model of the host was extended for 

hardware debugging and performance evaluation purposes. Such co-

emulation required 35 second for processing each coded image, i.e. a system 

clock at about 40-60 kHz was necessary. This speed was more than 30 times 

faster than a cycle-based co-emulation; it enabled running the software

developed for the TLM platform without any external or synthesizable CPU 

core aimed at the host modeling.

Figure 3- . Performance Figures of MPEG4 CODEC Platform 

Our experiment illustrated that the MPEG4 CODEC TLM platform was 

able to run a significant test-bench of 50 images in a couple of minutes on a

SUN-Ultra10 workstation with full source-level debugging facilities. Based 

on such performance results, we concluded with confidence that the MPEG4 
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CODEC TLM platform was very well suited as a base platform for the

embedded software development. 

7.2 PWP Sub-system: DMAC PL080 

Our second example is the TLM model of the PrimeCell Direct Memory 

Access Controller (DMAC PL080), which represents a sub-system on the

ARM PrimeXsys Wireless Platform (PWP) [9]. 

The focal discussion point of this example is the necessary modeling

decisions and trade-offs associated with the development of TLM models.

The impact of such decisions or trade-offs on the subsequent SoC design 

activities, particularly SoC performance analysis, will also be discussed 

extensively.

The 8-channel prioritized DMAC serves as an excellent example to

illustrate TLM modeling choices because it requires a parallel modeling

style to capture the whole controller behavior without flaw. Furthermore, 

this controller challenges the TLM modeling with part of its hardware 

parallelism that is not controlled by the software t but the hardware logic. t

7.2.1 TLM Model of DMAC PL080 

The main features of the ARM DMAC PL080 are listed below: 

• 8 prioritized DMA channels; 

• support for word, half-word, and byte transfers;

• 2 master AHB5 bus ports for larger data throughput on two buses; 

• 16 peripheral-controlled interfaces allowing transfers to be controlled by

peripherals instead of the DMA controller;

• peripheral-controlled interfaces are controlled by either hardware signals, 

or the special SoftXReq register bits that are set by some embedded 

software external of the DMAC;

• support for both little-endian and big-endian transfer modes (the two 

AHB bus ports can be programmed separately to support each mode);

• support for an AHB slave interface programming the DMAC memory-

mapped internal registers.

Based on the specifications above, the TLM model of the DMAC has to 

model the following interfaces:

• 1 AHB slave port;

• 2 AHB master ports; 

5  Advanced High-performance Bus.
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• 16 peripheral-controlled signals of DMACSREQ, DMACBREQ,

DMACLBREQ, DMACLSREQ, DMACCLR, DMACTC; 

• 3 DMA interrupt signals of DMACINTERROR, DMACINTTC, 

DMACINTCOMBINE. 

The TLM interfaces and the internal behavior of the DMAC are defined 

once the features listed earlier are thoroughly understood. The modeling of 

AHB and APB6 data ports are based on the TLM API while the system 

synchronization is based on the native simulator mechanism. Both signals

and events are available in SystemC. However, it is preferable to use signals

in TLM modeling. The reason is that it facilitates the application of TLM

models as the golden reference model for RTL verification and co-

simulation. Following are the details regarding the modeling choices made

for the main features of the DMAC. 

• AHB Slave Port 

This is an interface for accessing to the DMAC registers. Care must be 

taken that the a priori asynchronous update of the DMAC TLM slave

registers by the external software, does not and should not corrupt the 

internal behavior that depends on these registers. Since SystemC runs 

with non-preemptive threads, its simulation is controllable in each thread 

at known preemption points only. Model developers must therefore

ensure that preemptions points are carefully defined. Besides, the system 

synchronization must be correctly modeled to achieve a safe system 

design and a flawless SystemC simulation. 

• AHB Master Port 

The two AHB master ports of the DMAC allow simultaneous read and 

write operations. If a DMAC TLM platform is intended for an

architectural analysis, both ports are required in order to provide a 

realistic traffic generation. Since each of the ports has specific registers 

accessible by the embedded software, both ports must be modeled as well

for a DMAC TLM platform intended only for the software development.

• Interrupt Signal

Three of the interrupt signals in DMAC must be modeled because they

represent system events. 

• Register Bank 

The DMAC registers are modeled as the data members of the class 

6  Advanced Peripheral Bus.

definitions of DMAC TLM modules. All of the TLM DMAC registers  
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can be set to the equal size, e.g. to 32 bits. It can be set to the maximum

register size or the word size of the host machine (whichever has the 

larger value will be chosen).

In TLM modeling, a general rule to model the internal behavior of an IP

is that any deviation from the IP functionality is permissible as long as the 

functionality remains unchanged from the software point of view. Such

modeling abstraction reduces greatly the modeling effort and simulation 

time of the IP.

The DMAC includes two internal arbiters, one for each bus port. The

arbiters implement a priority-based algorithm, meaning that the channel of 

the highest priority is allowed to transfer data from its pending transactions.

Whenever a channel is suspended from transferring data due to unavailable 

input data, the arbiters will grant access to another channel of lower priority.

This feature helps to optimize the data transfer although it is not compulsory 

in the TLM model for a correct execution of the embedded software. Note 

that the arbiters cannot simply be annotated with timing information to

represent their timing behavior. Instead, a correct interleaving of the data

transfers between the active channels has to be modeled for this purpose.

The addition of such scheduling scheme refines the arbiter model into a 

timed TLM model, which is more suitable for the architecture analysis. 

7.2.2 Performance Analysis 

The simulation results of using the TLM model of DMAC PL080 along 

with the back-annotated TLM model of a static memory controller are 

carefully analyzed in this section. This analysis serves for illustrating how an

industrial platform (i.e. PWP sub-system) can be modeled in TLM and 

simulated close to the RTL precision, but with a much-advanced availabilityt

and faster simulation speed than the conventional RTL approach. 

If the DMAC TLM platform is initially conceived for the embedded 

software development, it must be upgraded to enable the performance

analysis activities for several reasons listed below:

1. the bus traffic generated by the processor is highly dependent upon its 

cache behavior; 

2. the multi-layer bus structure includes some arbitration scheme to 

access shared slave modules; 

3. the multi-port memory controllers employ particular arbitration

policies to select incoming requests;

4. the wait states of memory accesses have no fixed values. 

The following are necessary to build a DMAC TLM platform that is 

appropriate for conducting the performance analysis:
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1. an instruction set simulator (ISS) that includes a cache model for the 

integrated processor in the platform; 

2. the initial TLM model of the DMAC has to be refined into a micro-

architectural TLM model as described in the previous section; 

3. realistic arbitration policies must be implemented to control accesses 

to the shared resources on the platform. 

Memory latencies on the DMAC platform need to be accurately modeled, 

as we shall describe here for the static memory controller. The number of 

wait states observed at a given port depends on the transaction transfers of 

the previous and current accesses to that port. 

If an access is initiated while another transaction is accessing the static 

memory, then the access will be able to finish its job after a fixed time

amount that the first access completes its transfer. This fixed duration 

depends on the memory area being accessed (i.e. the memory bank) as well 

as the access direction of the previous and current transaction transfers (i.e. 

read or write). For instance, a 4-port and 8-bank memory controller has 256 

situations where each has a fixed number of wait states observed in the RTL 

simulation. The proper way to time-annotate the TLM model of this static 

memory controller is to overload the read/write methods of its functionald

TLM model. In the time-annotated model, read/write methods must be able

to call the SystemC wait function with a delay equivalent to the number of 

cycles for a given situation (i.e. each of the 256 situations is represented by a

specific duration of delay). 

With such time annotations, the resulted simulation platform is a blend of 

architectural and micro-architectural TLM models that contain sufficient 

timing accuracy for conducting the performance analysis. Therefore, the

timed TLM simulation of the static memory controller can serve as an

adequate cycle count estimate with respect to the RTL simulation. The traces

of such performance analyses are demonstrated in Figure 3-5 and Figure 3-6,

respectively for RTL and TLM simulations.

The upper part of each figure represents the transactions on the AHB

instruction bus (AHB-I) while the lower part represents the transactions on 

the AHB data bus (AHB-D). Both buses are connected to a single static 

memory controller (SMC) via separate ports. The data is stored in a flash 

whereas the instructions are stored in a ROM. Thus, the two AHB buses may

need to access to the memory banks concurrently through the SMC. When 

such a conflict occurs, the instruction-fetch transaction will take longer to 

finish. This phenomenon is observable in both the RTL and timed TLM 

simulations. Through implementing the RTL-based back-annotations in the 

memory controller, TLM accesses manage to have the same durations as

those in the RTL simulation but with a much higher simulation speed. t
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Figure 3- . RTL Simulation Traces of Performance Analysis 

Figure 3- . TLM Simulation Traces of Performance Analysis

In conclusion, the time-annotated TLM significantly assist architects in 

estimating the SoC performance through light modeling efforts and the high 

simulation speed. The greatest advantage of such is the hardware/software

co-simulation using modifiable hardware models, and above all, without 

going through the hassle of modeling the RTL or cycle-accurate platform for 

the whole SoC.
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8. SUMMARY 

The fundamental modeling techniques for the TLM approach based on

SystemC are gathered in this chapter.  

To begin with, a brief overview of the TLM modeling environment is 

covered in Section 2 ranging from system level languages to modeling 

environment and infrastructure. Extensive discussions on TLM modeling

API are grouped in Section 3. The foundation of the TLM API is introduced 

as a layered structure that hides nicely the modeling complexity from the end 

users. It implements the core TLM interface as the minimum interface

definition for the transactional level modeling as a communication API to 

transport a transaction from an initiator to a target. Above this layer, TLM

protocols are implemented to refine the semantics of the transactional 

transfer in terms of transaction payload and blocking/non-blocking transfer.

TLM IPs are modeled on top of a TLM protocol layer as functional modules.

Section 4 deals with the initiator modeling. It explains how to create 

SystemC modules that instantiate initiator ports, and how to get ready

processes that implement the IP behavior and generate transactions in a 

system. The target modeling is elaborated in Section 5. It describes how 

target modules are modeled by implementing the core TLM interface, either 

through a default implementation by the protocol base class or using an

overloaded core TLM interface implemented locally in the target module 

itself. Other topics include architectural resource modeling and behavior 

implementation. An approach to model TLM interconnects is illustrated in

Section 6, along with two examples: a simple router and an arbiter.  

Before closing the chapter, two practical examples are presented in 

Section 7 to demonstrate how real SoCs are modeled as TLM systems.
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Abstract: Early embedded software development, covering coding, testing, integration 

and validation, is one of the most important targets of TLM platform 

methodology. This chapter describes mainly the close relationship between the 

TLM platform and the software running on it. The description illustrates how

the software can benefit greatly from the early TLM platform availability. 

Reciprocally, hardware developers can also benefit from the early feedback on

their design when used by the software developers. The TLM platform can 

therefore be considered as the meeting point between hardware and software 

development teams.

Key words: software; Operating Systems; firmware; device drivers; application; protocol 

stack.  

1. INTRODUCTION

Nowadays, no hardware design of a system-on-chip is worth developing 

without any software to exercise its functions. The trend of “the smaller the 

better” in SoC design concept has rapidly pushed the role of software into

prominence during SoC hardware design process. While hardware aspects

are getting very tough to handle due to the ever-rising SoC complexity, the

weight of software aspects becomes more and more important in the overall 

system to manage new hardware functionalities and to replace certain

hardware features. 

This chapter highlights the brand-new role of software in conjunction 

with TLM platforms. It underlines the core idea of how system embedded
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software and TLM platforms could enhance and enrich each other in their 

respective missions. 

The conventional design approach allows a significant amount of the

software being developed, compiled and tested before any strict form of the 

hardware platform is made available. Only a specific part of software could

be developed when the detailed information tightly associated with the 

hardware is accessible in the form of RTL or emulation platform. This part is 

usually the toughest and longest to test and debug. Unfortunately, software

developers are always bound to wait quite long for such hardware platform 

in order to validate their development work. This is not only a costly time 

loss, but also an inefficient cooperation between hardware and software

designers for lack of a common development base. 

Despite the somewhat opposed design philosophies between hardware 

and software fellows, current SoC complexity is urging these two worlds to

work together in a new way leading to concurrent hardware/software design.

Time-to-market reduction and cost saving will be the successful culmination 

of such parallel hardware/software design. 

The idea of hardware/software co-design and co-implementation can be 

realized through a unique reference -the TLM platform-. Indeed, TLM 

platforms provide adequate and accurate hardware information for software 

designers much earlier than the conventional platforms such as RTL

platforms. This information must be sufficiently accurate for software 

designers to start developing, testing, and debugging the software code

closely associated with the hardware without pointless delay following the t

initial software development. In parallel, hardware designers can develop 

RTL platforms aimed at timing-accurate simulations, which are eventually

employed for logic synthesis. 

By the time the RTL design is complete, the software will have already 

been thoroughly verified on TLM platforms. The software design is thus 

ready to be integrated with the RTL hardware platform for system validation

within a much shorter time than the traditional approach. As a result, sound 

and solid concurrent engineering is achieved through the unique reference of 

TLM platform.

A closer study clearly reveals that software running on TLM platforms

can be classified into different categories according to their relationships 

with the hardware platform. This chapter will discuss extensively on the

software categories ranging from design requirements to the mutual 

expectation of benefits between software and its hardware counterpart.

Lastly, the chapter will draw a conclusion on how close collaboration

between hardware and software developers could lead to a virtuous circle.  
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2. SOFTWARE TARGETED FOR TLM PLATFORM 

Throughout the development of a new SoC platform, various teams 

participating in the hardware design are always interested in running 

software programs on the platform. Be it any team varying from RTL design 

to functional verification and integration, early software execution means 

early catching of hardware or software problems. More essentially,

executing software on the target platform helps to identify any potential

mismatch between software and hardware designs.

In spite of its very attractive advantages, getting ready the software for 

early phases of SoC design cycle should never be done at any inappropriate

cost of software development. The software should be executed on a 

development platform that is as close as possible to the final hardware 

platform. That will increase the probability of software reuse on the target

platform with very little or virtually no modification on the subsequent 

hardware platforms. Such reuses trim down not only the overall software

development time, but also the cost of refining software for these platforms.

A key parameter of developing the software targeted at running on TLM 

platforms is the immediate usability of the software in the current hardware

design process. It is not quite convincing to claim a software piece being 

developed early in a project useful if that software piece could only be l

validated on a later hardware platform. The software must be tested on the 

target hardware platform while it is being developed. To bring the software 

and hardware design in parallel, they must be managed in tandem for 

scheduling smooth meeting points that optimize their mutual enhancements.  

Running software programs on TLM platforms may appear easier than 

what it could really be for several reasons listed below:

1. TLM platforms are not real hardware platforms but abstract models t

for new platforms or IPs under design. To reach optimal uses of TLM 

platforms, software adaptations might be necessary.  

2. TLM platforms have diverse modeling varieties. Each model might 

involve subtle adjustments in the software to adapt for non-fully 

covered features such as interrupt request (IRQ) or input/output (I/O). 

3. Software compilations might require specific coding rules for proper 

program-runs in certain simulated environment of TLM platforms, for 

instance, compilations for handling timing issues on inexactly timed

platforms.

All these reasons seem coercive on the software development using 

TLM. These good reasons, however, will definitely lead to efficient software 

coding and better code quality if they are appropriately practiced. 
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2.1 Adequacy of Software and TLM Platform  

2.1.1 TLM Platform Accuracy and Availability for Software 

The software development through the TLM approach depends closely

on the modeling level of the corresponding TLM platform, which directly

reflects the level of accuracy of the target hardware platform. 

TLM platforms not reaching a minimal level of the functional behavior 

of the real platform may mislead designers to an erroneous software

development by masking certain mistakes or bugs. The harmful consequence 

would be giving the wrong impression that the software is validated and 

ready to run on the real hardware platform. If a TLM platform poorly

simulates the final hardware, very few software programs will be able to run

correctly on it. It may miss testing critical features for hardware validation.

The amount of time spent in such software development will be wasted and 

hence a higher global time-to-market.  

On the contrary, it is sometimes unnecessary to have all design features

simulated in TLM platforms if the whole process of concurrent 

hardware/software engineering is not significantly improved. Consider the 

following situation: Running natively compiled software on a timing-

accurate TLM platform will not give any clue to the final softwaret

performance on the target platform. For such case, instead of developing 

timing-accurate TLM platforms, it could be easier to insert annotations 

obtained from cross-compilation into natively compiled software codes for 

studying software performance. Such annotations provide accurate statistical 

timing information without considering hardware features like cache,

memory management unit (MMU) or write buffer, which could heavily

influence the software performance in simulation.  

Executing a software program on various functional TLM platforms has 

resulted remarkable outcomes. As an example, running a JPEG decoding 

program either on a PentiumIV with 1Mbyte of internal cache or on an

ARM926EJ-S with 16Kbyte of internal cache may yield vastly different 

performance results of latency and throughput. The results of executing the 

software on TLM platforms help to better analyze various aspects of the 

hardware and software relationships. The software efficiency and 

correctness on the simulated hardware or hardware modifications for 

facilitating software development are examples of such potential

improvements. 

More importantly, running software on functional TLM platforms brings 

mutual benefits to the two working parties:
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• Hardware Developers 

A live picture of how software programs utilize TLM hardware 

interfaces for real applications, which subsequently helps to improve 

the functional view of IPs on hardware platforms.

• Software Developers 

A live picture of how TLM hardware IPs react when software 

programs are executed on TLM platforms, which subsequently helps 

to improve the software implementation. 

Indeed, these mutual benefits require not only the appropriate modeling 

choices of TLM platforms tailored for varied software design purposes, but 

also the proper manner of developing software in the right perspective of 

TLM platforms available at different design phases. Such careful matching 

of software development with TLM platforms is what we mean by the 

“adequacy of software and TLM platforms”, which aims at optimizing the 

software development through the TLM approach.

2.1.2 Layering Software in TLM Platforms

To achieve such optimization, the software should be developed in

progressive layers corresponding to the different levels provided by TLM

platforms for simulation. This idea is illustrated by the development of a 

software driver for a UART sending and receiving characters on a given 

platform. The coding approach normally begins with a character-by-

character interface, although a direct memory access (DMA) can be used on

the final target platform. In the early design phase, an added-value feature 

like DMA may not be available yet in the hardware platform; besides,

adding DMA in the TLM platform may cause some undesirable time delay 

in simulation. Most of all, it might be inefficient to use DMA for handling

just a few characters because more management of registers and more

software managing I/O blocks will be involved for the same number of 

interrupts. Thus, it is best at this point to start developing the driver without 

supporting DMA. 

The good practice of the “layered” software coding through the TLM 

approach is strongly recommended. This concept is illustrated in the 

example of splitting a UART driver development into five phases as 

described in Figure 4-1. In the figure, each phase is represented by a task 

box. The size of each task box reflects roughly the relative amount of work 

dedicated for that particular phase with respect to the overall development. 
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Figure 4-1. Layered Software Development 

1. Development of basic functional features.

In this example, first phase focuses on developing a functional UART

driver managing simply character-by-character I/O interface. It is fast

to be developed for an early interface testing. 

2. Development of performance features and device options.

Second phase develops performance features and options of the

UART driver such as DMA access and cache management. Usually, 

these features can be easily inserted within the static conditional 

compilation. 

3. Development of added-value features.

To build a complete functional UART driver, all added-value features 

are developed in third phase; for instance, sleep/wake-up mode or 

performance counters. These features may be essential to help 

software designers in developing application software at higher level.

4. Development of time management features.

Fourth phase concentrates on developing time management features

of UART driver such as those for sleep mode or I/O completion

delayed interrupts, which are dynamically configurable through 

external parameters. These features are typically very close to 

hardware view.

5. Development of feature usage policy.

The final phase of “layered” software development determines the

policy of how and when all the optional and performance features

should be strategically employed. The mechanism of using all the

features developed in the four phases earlier is carefully refined in 

this phase.
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From the performance’s point of view, the cost of TLM transactions is 

not very dependent on the amount of the data transmitted. In the example of 

the UART driver development, sending the entire text of a message using a 

DMA will be much faster than using a character-by-character I/O. Although

the layered approach is valuable for the software development, using 

character-by-character I/Os in TLM platforms is inefficient due to their very 

long testing time: Assume that a character I/O takes N register accesses in 

the UART IP, i.e. each character will require N TLM transactions. Suppose

that for every UART access, the DMA makes M register accesses. If the

DMA is enabled, each DMA access to the UART IP can include any number 

of character I/Os, which will require only M TLM transactions. This will

certainly utilize TLM platforms much more efficiently. Therefore, such

performance features should be considered early enough in the design cycle 

to increase TLM platform overall efficiency. 

To conclude, there are three rules to respect for the optimal software 

development and execution on TLM platforms: 

1. Do not develop software too much in advance. It is not worth

developing the software for hardware features available very late or 

prone to change in the future. Time saving may turn out to be

worthless or extra delay may occur when hardware pieces are

available or modified later because of the adaptation time.

2. Organize software development tightly coupled with hardware design 

in layers adapted to IP functions. Basic but complete features should 

be clearly separated from optional parts. These features should be 

incrementally tested in phase with their addition in TLM platforms. 

3. Give priority in developing performance features and device options

for better software performance on TLM platforms. If this is not 

appropriately done, software developers may not make the most 

efficient use of TLM platforms (they may probably get discouraged to 

use the TLM platform due to its slowness).

2.2 Analyzing Software on TLM Platform 

As presented in Chapter 2, TLM methodology offers two distinctive

models of the hardware platform for software development, namely untimed 

TLM (PV) and timed TLM (PVT). The current section focuses on how the

software should be adapted for running on different models of TLM 

platforms.

Practical software properties will be provided throughout this section to 

demonstrate the global software quality improvement that could be brought 
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by each TLM model. Such improvements will be compared to what RTL

models and real chips can do for the software development today. 

2.2.1 Functional Accuracy

TLM platforms are designed to provide an accurate functional view of l

the final hardware platform so that any software with correct functional

behavior will be able to run on them. This may not include running the 

software with some non-functional aspects of the hardware platform such as

real speed, linear time, or event ordering. 

On top of the layered software development explained earlier, writing the

software that is independent of any timing or event ordering issues is another 

good coding practice reinforced by TLM. For example, assume that an I/O

starts with a register-write. The associated software should be ready to 

receive the I/O completion event at any time starting from the return of 

register-write operation. The same sort of the software functional behavior 

can sometimes occur on real chips because of I/O errors or suspended 

instructions due to interrupt handling. An untimed TLM platform, however, 

can offer the same advantage at much earlier availability!

Another example of analyzing the software functional behavior is

described hereafter. Imagine that a software code reads some data from an 

always-ready source and writes it to a sink. In the real life, the sink will take

some time to handle the data before it is ready to consume more data. 

Meanwhile, that extra delay will allow the software to perform other tasks.

In untimed TLM platforms, the sink may accomplish the task instantly or in 

very small simulation time. The software will thus be ready to keep getting 

data from the source and passing it to the sink. If the software is not able to 

handle such behavior, it will spend all its time moving data from the source

to the sink but nothing else! Running such software on TLM platforms will 

give the wrong impression that the functional behavior of either hardware or 

software is incorrect.  

As long as the TLM platform is functionally correct, it will provide an 

absolute time reference with strict event ordering although it may not be

time-accurate. Indeed, the root of the problem above is writing the software

with the assumption that the sink will take enough time to handle its data to

allow other tasks being scheduled. Two methods can handle this situation 

properly: 

1. Let the software manage its tasks in the round-robin such as simple 

executive runtime.

2. Let the software handle the I/O management on an event basis. It will 

require some software adaptations for TLM platforms. The same

problem may still occur if the software has too many events to
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manage. This method, however, helps to handle certain rare real life

situations that are probably never really tested in real chips.

This example clearly illustrates how the software should be adapted for 

the chosen model of TLM platforms for an appropriate analysis of the 

software functional accuracy. 

2.2.2 Global Time Accuracy 

The global time accuracy of TLM platforms is not an easy aspect to 

handle. The reason is that a system should be able to run even if it is not

time-accurate. Since timing is very often an important feature for the 

software, untimed TLM platforms cannot completely ignore the timing 

behavior. Instead of implementing the full timing, events are strongly 

ordered within each IP. There is no global order for events occurring in 

different IPs, meaning that delays between event occurrences of different IPs 

are not accurate.

Implementing the global time accuracy in the software is not particularly

difficult. The software, however, must be ready to manage this behavior 

proficiently. It is a bad coding practice to assume the order of two event 

occurrences in a system. For example, a timeout should be programmed to 

occur anytime after its scheduling without assuming that it may not occur 

before something else.

The major difficulty of implementing the global time accuracy in the 

software is the task management based on timing but not on event, for 

instance, time-sliced scheduling of Operating Systems. Such implementation

is usable only if the software can ensure that a task is able to complete a 

sufficient amount of work before a time-slice. The system could otherwise 

be reduced to switch from task to task with little or no time to perform

anything useful in between! In this case, the software may appear 

functionally correct but the execution result could be too far from the 

expectation of software developers. Software cannot do much to solve this

problem. Rather, the hardware platform should give some hints on the time 

evolution such as estimates of software time expenses. When running

software on untimed TLM platforms, software developers should somehow 

be ready to see some unexpected timing behavior of their programs. 

In contrast, it is quite a different matter to handle the global time

accuracy of the software on timed TLM platforms. Such platforms are able d

to provide the global time accuracy, i.e. a strong ordering of events for the

entire platform. The software can thus be executed more accurately with

respect to its timing behavior, including timeout, time-slice, or delay 

required by platform IPs in handling I/O events. Unavoidably, such timing
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accuracy is paid by a much less efficient software execution because there 

are more events to manage compared to those in untimed TLM platforms.

The global time accuracy of a given platform depends very much on the 

way of how IPs are implemented in the platform. If all IPs comply with the 

timed TLM constraints, the entire platform will be globally time-accurate.

Software programs may run only with approximate timings on the hardware

platform in cases where certain IPs are not timed TLM compliant, or native 

software compilation or non time-accurate ISS is employed. Nevertheless, it 

could be interesting to test the software in environments that are different

from the final timed platform. 

Obviously, it is more understandable to develop and test the software on 

timed TLM platforms with fine-grain timings than on untimed TLM

platforms with approximate timings. The most suitable choice for analyzing

the software behavior related to the global time accuracy is of course the 

timed TLM platform. Software programs, however, should run correctly 

without any code modifications on both untimed and timed TLM platforms.

2.2.3 Protocol-Timing Correctness 

When an external component is connected to a SoC, software developers

need to program the relative timings correctly for eliminating any potential 

communication hazards. This is probably one of the trickiest problems to

solve in the software because its failure cannot be easily detected on RTL

hardware platforms. The symptom of such problem is typically an unstable 

system that works properly for some time, but crashes suddenly with no

warning signs. 

Timed TLM platforms are the best spot to uncover such programming 

errors. For example, PVT platforms can effortlessly reveal insufficient wait

states for accessing a memory IP by comparing the number of wait states 

programmed by the software to its internal characteristics. To do so, the PVT 

memory controller validates if the time amount required by the memory

access is coherent with the number of wait states programmed. If the wait 

states are insufficient, the memory IP can send a notice thanks to the timing 

information held by TLM transactions.  

The concept explained in the example above, by analogy, applies to any 

other external controllers connected to SoC platforms via standard industrial

buses such as I2C, CAN, I2S, SPI, and so on. Once the first prototype board 

around a SoC platform is built, it is usually too late to fix an external

protocol-timing problem where platform controllers and external devices

sharing the same protocol fail to communicate. A “quick and dirty” way to 

overcome such hardware problems is to modify the software, which 
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unfortunately results in, most of the time, reduced performances and 

functionalities.

Protocol collision management is another protocol-timing test that can 

easily be set up thanks to TLM platforms. Some simple bus protocols such

as CAN or I2C are designed to solve collision issues by forcing a master to 

be a slave, which will consequently change the behavior expected by the

software. Protocol collision is a very difficult software behavior to test 

because forcing collision on hardware is a tough procedure that usually

requires special hardware to test all potential cases. Although a bus-cycle 

accurate platform can set up all types of collisions, timed TLM platforms are 

sufficient to set up global collision required by software developers at an 

earlier availability. In addition, the input of the TLM platform could be 

programmed to show such specific hardware behavior. Thus, it can provide

software developers with the ability to validate the actual software behavior 

on demand. 

2.2.4 Resource Overflow 

With the advent of SoC, software developers have somewhat lost a little

of the control they used to have over the unexpected limit reached by

performance. Consider the following case of resource overflow: a 100Mbps 

Ethernet controller together with a fast CPU can sustain an Ethernet flow 

close to the theoretical limit, particularly for full duplex mode without 

collision on wire. If the theoretical limit is far from being reached, software

developers can use a packet analyzer to examine the packets received by 

Ethernet driver from the controller. They might sadly notice that the packet 

is surprisingly in coherence with the speed announced by the application.

The only solution is to analyze deeper the packet flow between its input in

the Ethernet controller, and the interruption signaling for its availability in

the memory. 

In general, it is extremely hard to peek at the activities going on inside a 

SoC. But, there are so many hardware items involved in the packet 

management (IP, DMA, buses, caches, etc) that it is almost impossible to 

easily detect any bandwidth bottleneck. Resource overflow, on top of this

difficulty, is very often hidden by some hardware limitations in bandwidth,

access priority, etc. All these factors make this specific problem a real tough 

job to fix for software developers. In addition, RTL platforms are not exactly

the right solution due to their performance limitation. 

A good tactic to cope with resource overflow will be employing TLM

platforms because they provide adequate details and hints to guide software

developers in locating the problem. Timed TLM platforms optimize timing

measurements to avoid all hardware contentions in accessing resources on 
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the platform. As a result, it is easier to get the best performance 

measurements especially for cases where cycle-accurate ISS is applied. If 

the performance is satisfactory, software developers can proceed with a bus-

cycle accurate platform, which gives results on the miscellaneous hardware 

contentions that the system has to face for this particular test. With all these 

results, software developers will be able to locate the problem of resource

overflow.

2.2.5 Performance Profiling 

The foremost interest of executing software programs on TLM platforms 

is of course getting the software running on the target platform. Once the 

software gets up running properly, the next goal will be collecting early

performance results before the final hardware is available. Performance 

measurements are not only based on timings, but also start with non-timing

counters such as the volume of transactions exchanged by IPs. This job can 

be accomplished adequately by untimed TLM platforms. 

Untimed TLM platforms, however, cannot do much to obtain timing

results. Attempting this on hardware platforms may not be the best choice

because the measurement software itself could modify the overall timing of 

the platform. Since measurement mechanisms are embedded in the IPs, 

timed TLM and RTL platforms are both capable of evaluating timing results

without altering the overall timing of a given platform. Obviously, timed

TLM platforms are better options than RTL platforms for performance 

profiling thanks to their usual earlier availability.

Inconveniences may arise in common practices of performance profiling. 

Frequently, software needs to be modified to obtain profiling results. The 

measurement software is thus intrusive on the system platform. Sometimes,

the profiling procedure could be dreadfully time-consuming or the external

hardware required for extracting profiling results from a platform may not be 

available all the time. 

Through timed TLM platforms, however, all these inconveniences are 

straightforwardly resolved. Since measurement mechanism is embedded in

the platform IPs, performance profiling is independent of any software t

running on the platform. That will greatly reduce the workload of software

developers.

The example of latency profiling gives a better idea of how helpful timed 

TLM platforms could be for software performance profiling. Latency is very 

hard to finely measure when the software is running on the hardware 

platform. Such difficulty is particularly bitter for real-time systems that are

extra-sensitive to latency issues. Timed TLM platforms, nevertheless, can

run real-time software without any modification to conduct profiling such as 
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building the histogram of interrupt latency. Therefore, a software developer 

can get fine and accurate results without any modification of software, just 

by extracting the right profiling from its timed TLM platform.

2.2.6 Hardware Utilization

Running software on TLM platforms grants the ability to detect whether 

software makes the right use of hardware platforms. Additional non-t

functional code can be embedded in TLM platforms to validate if hardware

is utilized properly as expected by its design. Although hardware could 

tolerate certain bad or poor utilization by software, the resulting effects of 

such use are sometimes likely out of software expectations. 

Consider the example of UART transmit-character register. Under 

normal practices, it is not permissible to push another character into this

register if the previous character is not yet consumed. The hardware,

however, allows software to freely write characters in this register as many 

times as it wants, without any effect on the IP behavior. Most of the time,

overwriting character in such manner is a programming error. TLM 

platforms can help to verify the same sort of programming errors without 

much effort. As a result, software developers can obtain reliable hints on the 

potential programming errors in the software.

TLM platforms also provide interesting results about the software

utilization of particular hardware features. For the same register in the last

example, certain UART IPs allow software to push another character in the

register while the current one is being transmitted. This is a special feature to

reduce the latency between the end-of-transmit interrupt and the availability

of the next character to be transmitted, which software developers are invited 

to use as much as possible. Internal counters can easily be enabled to

measure how frequently this hardware feature is used by the software. 

Following the simulation, a statistical listing for the utilization of special

hardware features can be provided. Based on the list, software developers 

can learn better about the hardware utilization by their software 

implementations, whereas hardware developers can see the actual utilization

of hardware features in real cases.

2.2.7 Conclusion

After discussing on how untimed and timed TLM platforms can help 

software developers, Table 4-1 summarizes and compares the different kinds 

of software behavior that can be studied at different modeling levels.
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At first glance, the summary may mislead to the conclusion that bus 

cycle-accurate (BCA) platforms give the best software support. This could 

probably be true if the overall platform performance and setup work are not

considered. This is the reason why these two criteria usually determine the 

interest level of using a TLM platform model for running, testing, and 

debugging software before RTL and real hardware platforms are available. 

If these criteria are considered, BCA is certainly not the best option

because both untimed and timed TLM still provide faster performance than 

BCA, and are usually set up and integrated much quicker. Although RTL is 

the slowest for performance and construction, its vital hardware simulation 

capabilities make it necessary to be constructed (normally after TLM

platforms). Concisely, TLM platforms are the most compelling models for 

running and testing software before the real chip is available on silicon

wafer.

Table 4-1. Software Behavior Observed at Different Modeling Levels

Software Behavior PV  PVT  BCA RTL Silicon

Functional Accuracy Yes Yes Yes Yes Yes

Global Time Accuracy No Yes Yes Yes Yes 

Protocol-Timing Correctness No Yes Yes  No No

Resource Overflow No Yes Yes Yes No 

Performance Profiling Yes/No Yes Yes Yes Yes/No

Hardware Utilization Yes Yes Yes No No

Accurate Concurrency No No  Yes Yes Yes

PV = Untimed TLM BCA= Bus-Cycle Accurate

PVT = Timed TLM RTL= Register Transfer Level

Notice that the accurate concurrency is a behavior listed in Table 4-1 

without being discussed earlier. This is a critical behavior to analyze when 

two or more IPs try to access concurrently the same platform resource like 

bus or DMA. Such concurrency is part of the functional accuracy that can be 

implemented in TLM platforms. The accurateness of such concurrent 

collision, however, is not handled by TLM because it requires cycle 

accuracy to manage the interactions and requests of platform IPs.

2.3 Software Environments of TLM Platform 

Running software on TLM platforms depends not only on the platform

design, but also on the different environments in which the software will be

handled. There are four major TLM software environments, which will be

discussed in the coming sections:
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• Software Development Environment 

Describe how software is produced and debugged.

• Software Execution Environment 

Describe how software is executed on TLM platforms.

• Software Integration Environment 

Describe how software is integrated into TLM platforms. 

• Software Simulation Environment 

Describe how software gets input data and puts output data. 

As depicted in Figure 4-2, these four software environments correspond 

very well to the famous V-diagram for the life cycle of software. Each of the

environments prepares the necessary setting for performing the different 

software work at various phases.

Figure 4-2. Relating TLM Software Environments in V-Diagram 

2.3.1 Software Development Environment

TLM offers the great advantage of having a simulated hardware platform 

that can be either natively compiled for faster speed or cross-compiled for 

binary compatibility and higher accuracy. This dual compilation capability

therefore provides two development environments to software coding and 

implementation. 

The cross-compilation development environment requires embedding a

model for the targeted processor (usually called an ISS) in the TLM

platform. The software can then be compiled for the actual target processor 
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and simulated by the ISS. The software is thus isolated from the TLM

platform execution by the host system.

The native-compilation development environment merges the execution

of the software with the execution of TLM platform IPs by the host system. 

The software is link-edited with the TLM platform simulation code and 

executed as part of the complete platform process; the main characteristic is 

that software shares the same address space as the platform simulation code

itself.

TLM software development environment relies heavily on the decision 

made for software integration. Different integration methods require

different integration tools, for instance, native integration necessitates

different tools from cross-integration. According to the opted integration

method, the appropriate development tools must be applied; and that will 

determine the software development environment. 

Certain development tools, however, remain the same for either native or 

cross integration. A handful of examples include editors, source code 

generators, and particular compilation suites such as those using GNU tools. 

Sometimes, it is even compulsory to keep the same tools. Consider the 

example of GNU tools: If GCC and binutils are used, source code must be 

compiled exactly the same manner in either native or cross environment. The 

reason is that different compilers may actually require code adaptations due

to their different specific syntax or extensions.

Using two different development environments (and thus two different 

integration environments) reinforces software portability, especially if both 

have different compilers. Not only can the code quality be improved by

porting the software on two distinct environments, but more potentials 

problems can also be uncovered through different code compilations.  

Conversely, software may undergo the side effect of being sensitive to 

certain processor aspects listed below due to using two different central

processing units (CPU) in its development environment:

1. Endianness. The software must be ready to support any endianness 

(little, big, reverse, cross, etc) if the two processors (native and cross) 

have different ones. 

2. Assembler. If the software embeds assembly codes as C extension, the 

same function ought to be available for both processors; it should 

otherwise be replaced by a functionally equivalent but less 

performing C code.

3. Self-modifying code. If the embedded software uses self-modification, 

a similar feature must be made available in the native environment.

4. Data alignment and size. If the embedded software relies on specific 

data alignment and size, then the software must provide all used 

compilers with these requirements. 
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5. Addressing features. If the software relies on specific addressing 

features imposed by the final processor, they must be implemented by

any potential native processor.

In the software development chain, post-compilation tools for debugging 

and profiling could be very different between native and cross-compilation.

Software debuggers, in particular, can be totally different. The native 

debugger controls the running platform directly whereas the cross debugger 

controls the platform indirectly via a client-server architecture. Showing too 

many tiny details of the TLM platform to software developers is an 

additional problem of the debugger in native environment. It could be very

confusing for those developers who wish to debug their software but not the 

hardware. The native debugger should then be adapted to display only 

necessary information to software developers.  

Compared to debugging, software profiling on TLM platform is quite a 

different matter. It is only worthwhile for special cases as follows: 

1. Profiling conducted on natively compiled TLM platforms. Although

the results can be very different from the final platform, it gives some 

valuable hints on the behavioral performance of the platform during

early development phase, such as access counters. Calling graphs

might also be extracted in such profiling for early performance and 

execution path analysis. 

2. Profiling conducted on cross-compiled timed TLM platforms. Such

profiling provides the very first idea of software profiling with coarse-

grain timing before RTL hardware platform is available. 

2.3.2 Software Execution Environment 

TLM software execution environment is determined according to the

adopted development environment. Software reaching this phase should be 

ready to be executed for unit testing, either as native compilation or as cross-

compilation with an ISS.  

With such performance-reducing factor as ISS overhead in cross-

execution or hardware emulation, native execution is certainly the fastest 

execution environment. This is nonetheless not always a true statement

because timing issues in natively compiled codes are totally different from 

those in cross-compiled codes. For an example, a different timing in 

hardware could probably cause such an overhead that the software is

paralyzed, or it could probably run the software correctly in the native mode 

but masking some stubborn bugs that would only be visible under ISS

execution!
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One of the assumptions held in the previous example is that the compiler 

chain produces correct code in both native and cross cases. Running native

codes can help nothing in debugging cross-assembled parts or coprocessor 

specialized instructions. In addition, certain data representations cannot be

compiled because they are unavailable on native platforms, for instance, 

floating-point representations. 

The toughest challenge in software execution is the memory mapping of 

the software. It is quite straightforward for software cross executed with an

ISS. The software simply runs in the memory space defined by the ISS, i.e. 

the memory zone perceived by the software in the platform. The situation,

however, becomes trickier in native execution. The software is bound to run 

in the memory space defined by the local host, which could be different from 

the one programmed in the software for the final hardware platform. 

Consequently, the software needs to be relocated into this different 

memory zone. Addresses of memory layout might need to be translated to 

addresses not used by the underlying host system. Some software

adaptations are required to remap cross-compiled hardware addresses into

natively-compiled addresses without flaw. There is something similar to 

implement for register accesses. The reason is that they are not simple 

memory-mapped read and/or write accesses as in the cross-compiled 

environment, but requiring some modifications to fit the actual bus modeling

schema.

The register access remap should never be regarded as useless overhead, 

but rather as a good software coding practice. It allows the re-definition of 

hardware register accesses via generic read and/or write macros according to 

different compilation modes. Native compilation paves the way for software 

developers towards the first functional view on the final hardware platform;

meanwhile, it enables the implementation of valuable portability features in 

software.

Among all the possible native execution environments, the operating 

system (OS) emulation deserves a special hat’s off. Its goal is to abstract the 

interface between the OS and the hardware platform to set up a native

environment. In this environment, applications can run natively on the OS 

layer while the OS itself can run natively as well on the hardware platform.

Since the CPU used in the host machine is more powerful than the one in the

real hardware, such setting can reach very high performance by running

software on the simulated platform much faster than on the real hardware 

platform.
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2.3.3 Software Integration Environment 

TLM software integration environment provides the right setting to 

perform integration tests for a given system. It is not a simple task to

determine how TLM software should be integrated into a hardware platform,

especially when multiple solutions exist. One of the solutions is to

incorporate the embedded software into the simulated hardware. It suggests 

that the software interacts with the hardware in terms of reading or writing

data. These interactions are simulated as software actions on TLM platforms.

For example, a hardware IP register access is interpreted as calling the right 

function in the IP module of TLM platform to simulate the access.

When modifications are necessary, it is preferable to change the software

instead of the hardware for the reasons of cost, time, and workload. 

Therefore, it is sometimes desirable to separate software from hardware. An 

alternative solution could be compiling software for the target CPU and 

simulating IP accesses through an ISS.  

Bear in mind that performance is one of the main criteria for using TLM

platforms. In the alternative solution, performance is yet a problem because 

ISS is not as fast as native CPU. If performance is the main consideration, 

the most appealing solution could be native execution. The software must

then be link-editable in TLM platforms, and that could probably be a source 

of diverse problems. Some of the possible problems are listed below: 

1. TLM platform is link-editable through some external libraries that 

must be compatible with those of the software. If they use different or 

incompatible versions for the same library, the integration will fail 

because the same symbol may cover different functions. 

2. If the software defines external symbols that collide with those of 

TLM platform libraries, the same problem as in (1) will occur.

3. The software is obliged to compile with the definitions of TLM

platform that could potentially collide with those of the software.

4. The software may use process resources such as signals, memory 

mapping, and file descriptors in an incompatible manner with those 

on TLM platforms.

This list is non-exhaustive but enough to show the lurking problems that 

could appear anytime during the integration process. It is therefore hard to

decide beforehand if native execution is feasible, although it may appear 

attractive in performance. Anyway, a potential solution always exists, i.e. 

integrating software into a cross-compiled environment where the software 

runs independently of its hardware platform. 
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2.3.4 Software Simulation Environment

Once it has managed to execute and integrate correctly on the target 

platform, TLM software will proceed to the software simulation for 

validation and evaluation testing. The software usually cannot run alone in 

the simulation environment because the entire board holding the SoC is 

involved; meaning that some external input and output data flows are

required to conduct such simulation in a real environment.  

A simple way to establish connections between the platform and the

external world is to input/output data of platform IPs from/to local host files.

Its greatest advantage is the easy setup that enables software to run test 

samples promptly from the local host files. Such reference samples will

really be handy for debugging algorithm or platform behavior of certain final 

code, say protocol decoding. 

Connecting with local host file is not always sufficient. It is interesting to

connect IPs with real devices in certain cases; for instance, interfacing a card 

reader IP with a serial line, or bringing the actual character protocol into an 

UART IP to allow testing software on emulated hardware that is connected 

to real hardware. Such “real” connection can also be employed for buses like 

Ethernet or USB through the host system devices.

Another interesting aspect of the TLM simulation environment is its 

ability to report the input/output of hardware multi-media to the host. 

Consider the following example. If the software is designed to use an LCD

of a given size, it is quite straightforward to map the LCD on the host 

graphical window. That allows debugging the exact contents provided to

users without needing to write a single line of code, which is anyway not 

reusable on the final hardware platform. Essentially, this aspect is the most

remarkable difference of TLM simulator from an emulator that really entails 

interfacing with the software.

The greatest interest of exporting the simulation environment out of the 

platform is to provide total flexibility in the way of connecting the platform 

to the external world. Defining standard interfaces for internal IPs is a 

corollary of giving software developers such flexibility in the simulation. 

With this flexibility, software developers can simulate their design with the

external world in any way they wish (including incompatible simulations), 

and to any extent they wish (up to the complete simulation). The platform

with such interfaces needs not to embed any external input/output devices

such as graphical windows to simulate serial communication. As a result, the

platform is more portable from one system to another because the

communication will be standardized via an open socket protocol. 
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2.4 Conclusion

TLM platforms provide software developers with a brand-new interesting 

methodology to test the software in a hardware simulation environment.

Since the simulation is pure software, it is possible to set up different 

environments depending on the characteristics required by the platform, 

including accuracy, performance, connection to the external world, and so

forth. In fact, TLM has filled up the gap between software and hardware 

developers. A bridge is now constructed between these two teams to enable 

each of them to observe from their own perspective how their development

work is used by another team.

2.4.1 TLM Impact on Software Development 

TLM platforms provide software developers with a hardware base to

develop and more importantly, to test their software long before any pure

hardware emulation is available. This is particularly helpful for the new 

hardware IPs on which no software has ever been ported or written yet. The 

major advantage of such early software development and testing in the SoC

design cycle is to reveal any potential problem between hardware and

software prior to their delivery.

Developing software that can be simulated immediately on the target

platform is certainly beneficial. It helps to produce better software 

implementations in terms of portability and hardware utilization. In general, 

TLM reinforces good practices in software development process.

Based on TLM platforms, software developers can fully focus on the 

coding targeted for the final hardware platform without building any 

temporary dummy (and sometimes costly) hardware platforms. The software

can be simulated at different accuracy levels on TLM platforms in the 

different environments required by the software developers. Such 

conveniences grant software designers ample freedom to perform their job 

without waiting keenly for the first hardware platform. 

2.4.2 TLM Impact on SoC Design Flow

The overall SoC design flow has to be reconsidered when using TLM.

This is essentially the foremost impact of TLM on the SoC development. A 

TLM platform is regarded as the first hardware prototype wherein software 

developers can execute their code. Even a partially complete TLM platform

can interest software developers because it can already help debugging their 

code up to a certain extent.
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In brief, TLM can significantly alter the conventional manner of how a 

system-on-chip is constructed by creating more positive interactions between

hardware and software fellows. A veritable hardware/software co-design

will therefore be achieved through TLM approach.  

Another appealing advantage of TLM is the cost. The number of a given 

TLM platform can be multiplied as many as the host machines that it can use 

for running. Consequently, the number of software developers being able to

use this particular TLM platform is potentially unlimited at a given time. 

This advantage can rarely be provided by a typical hardware prototype such

as emulator due to the cost issues. Naturally, more engineers will be able to 

work on a SoC project in its early design phase based on TLM platforms. 

Figure 4-3 illustrates the time phases of the TLM-oriented hardware and 

software development. During the development of the untimed TLM 

hardware platform, a huge functional part of software programs can be 

developed. Once the untimed platform is ready, software designers can start

testing the written software on this platform. Certain time-level features can 

be added to the software codes based on the untimed platform. Through 

observing the software execution on the untimed platform, we can improve 

not only the codes but also the untimed platform. Meanwhile, hardware 

designers continue their work in conceiving the timed TLM hardware

platform. Once it is done, the further developed version of software codes

will be executed and tested on the timed platform. Based on the timing

information on the timed platform, software designers can further develop

the software for the hard timing parts. Such software execution helps not 

only to improve the software code but also the timed hardware platform. At 

the same time, hardware designers keep on their job to conceive RTL

hardware platform. Note that as the RTL hardware is ready, the software will 

have already been well tested on untimed and timed TLM platforms. Such 

“almost-final” software applications will be able to run quickly on the RTL 

platforms to reveal some hidden stubborn bugs.  
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Figure 4-3. Time Phases of TLM-oriented HW/SW Development 

The interactive design between hardware and software teams enhances 

the whole system design by visualizing their work to each other in a 

transparent manner. Hardware designers can observe how the software 

program utilizes the hardware platform while software designers can see 

how the hardware platform reacts to the software execution.

2.4.3 Illustration of Software on TLM Platforms 

After reviewing various aspects of the relationship between software and

TLM platforms, it is worth our time to discuss in details about the

development of different software families based on TLM platforms in the 

rest of this chapter. The discussion will lay emphases on the objectives of 

using TLM platforms, TLM-based development and execution approaches 

along with illustrations of practical examples. 

From an architectural point of view, software can be arbitrarily split into 

three layers as depicted in Figure 4-4. Each layer has a particular 

relationship with the hardware, and thus with TLM platforms.  
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Figure 4-4. Software Families Developed on TLM Platform

3. TLM-ORIENTED DEVICE DRIVERS 

3.1 Introduction to Device Driver 

Device driver is the closest software level to TLM platform as shown in 

Figure 4-4 earlier. The key role of device drivers is to abstract low-level

peripheral details to represent a generic programmable interface comprising

a number of predefined functions. Device drivers should be the only entity

accessing peripheral resources such as registers or shared memory. 

A common method of accessing peripherals is via register accesses. 

Usually, registers are gathered into a unique I/O memory area reserved for 

specific IP accesses. Since their behavior is peripheral-dependent, register 

accesses must be correctly implemented in TLM platforms with the accurate 

functions. Another way of accessing peripherals is by means of shared 

memory. A memory zone is reserved in TLM platforms for data exchanges 

between peripherals and device drivers. Such data exchanges are performed 

within the structures defined by the peripherals. 

3.2 Purposes of TLM in Device Driver Development 

3.2.1 Unit Test Development 

One of the very fundamental purposes of device drivers is to develop unit 

tests for a given IP on a TLM platform. Such device drivers run simple tests

to assure the proper implementation of platform IPs. The degree of 

correctness tested by them depends on the types of the underlying TLM

platforms, for instance, it is out of scope to test timing issues of an IP on the

untimed TLM platform.
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A device driver may cover more than a single IP if a DMA is coupled 

with the IP-under-test. In that case, the DMA will be tested as well but only

for its interactions with that particular IP-under-test, i.e. the device driver 

can only conduct partial DMA testing. 

3.2.2 Non-Regression Test Development 

Device drivers can be developed as simple software for performing non-

regression tests on TLM platforms. In the early phases of TLM IP

development, it is vital to run device drivers on the TLM models to verify

their correctness. As the design develops gradually into TLM models and 

becomes more complex, running the existing device drivers can be

considered as a good non-regression test suite, which can verify that the 

additional new features work properly without distorting the old features. 

Non-regression tests are usually totally independent of whether there is

an embedded processor or not within the platform. Thus, the same tests are 

portable on the different platforms integrating the same IPs. This is a great 

advantage to validate quickly the reutilization of IPs on various platforms. 

The only characteristics to modify from one platform to another will be the

base I/O address and the interrupt mapping.

3.2.3 OS/Firmware Device Driver Development 

The term “device driver” is indeed derived from the semantics of 

OS/Firmware. It represents a piece of software developed specifically to be

inserted into another piece of software that is more complex, i.e. the

OS/Firmware itself. The purpose of this extra software piece is to isolate 

low-level management of IPs in an independent module with some

externalized interface.

Device drivers serving for such purpose do not run alone as in the two 

previous cases, but rather in an environment with some constraints that will 

impose a particular way to use IPs. These constraints enforce a conventional 

manner of software coding, which may potentially improve the way that 

hardware is programmed.  

Despite some attempts to standardize the interfaces, device drivers are 

usually not portable from one OS/Firmware to another; hence leading to

different ways of using a given hardware. 

3.2.4 Experimentation of New Hardware Features

Another interesting purpose of device drivers is to exercise new hardware 

features for experimenting their different aspects such as programming ease, 
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performance improvement, programming examples, etc. Such experiments

can be quickly set up on TLM platforms to test tiny modifications on the

hardware before the real alterations. 

Since device drivers are final software pieces of larger models like

OS/Firmware, they can be modified independently from the rest of the whole

system to include new hardware features. It is therefore very easy to rapidly 

set up a model for hardware developers to build their intended design, and 

subsequently exercise this new design under a realistic software execution.  

As a result, hardware developers are able to verify the correctness as well 

as the resulting effects of their tentative design under the real scenario of 

software run. 

3.3 Approach to Device Driver Development 

This section focuses on the different approaches to developing device 

drivers. General rules of writing software targeted for TLM platforms are

presented in section 2.1. For device driver software, the methodology of 

layered software development remains valid for its development and testing.

Some additional aspects that deserve special attention will be explained 

extensively in this section. 

3.3.1 Interrupt vs Polling Management

Reporting occurrences of interrupt events within an IP is normally 

managed by setting a particular bit of the IP status registers. Optionally, the 

IP may forward a signal to an interrupt controller that will in turn monitor 

the CPU interrupt line. From the angle of software, there are two methods of 

managing IP events:

1. Synchronous Programming. Polling (i.e. reading continuously) the bit 

reserved for interrupt in the status register until the right value is

obtained.

2. Asynchronous Programming. The software executes standard 

procedures. Under interrupt occurrences, it is diverted to execute a

handler that has been previously associated to the interrupt. At the end 

of the handler, it will simply continue execution of the procedure at 

the point it has been interrupted. 

The two methods are not really independent in TLM platforms. The first 

method issues a TLM transaction whenever the status register is read or 

accessed. It thus induces a lot of overhead especially if the interrupt event 

takes quite some simulation time to occur. This is the appropriate choice for 
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coding interrupts in unit test software because there is normally no other 

software running than unit testing. 

Waiting for an interrupt as described in the second method is very close 

to the real situation on the real platform. It leaves no impact on TLM

platforms because the IP will initiate a transaction when the real interrupt is

routed to the interrupt controller. This method is suitable for testing the

interrupt mechanism of a system. It is particularly useful for device drivers

as they need to continue other tasks while waiting for the interrupt event to 

occur.

The software should take into account some unexpected behavior that 

could probably be induced by TLM platforms. One of the common examples 

is the approximate timing estimated by the untimed TLM platform, which

delays certain event occurrences. Asynchronous interrupt programming

assumes that the hardware will notify event occurrences with sufficient

delay, which allows the software to perform some useful job while waiting 

in background for the interrupt. The consequence is that the software may

not be able to do anything or even spend more time than expected in the

interrupt handler if the interrupt occurs too quickly. The same problem,

however, will not arise in the timed TLM platform since the timing is an

absolute reference, i.e. events setting an interrupt will consume the required 

time amount before their occurrences.  

Therefore, polling should be applied as much as possible in the untimed

TLM platform instead of asynchronous interrupts. However, if the

asynchronous interrupt modeling is required on untimed TLM platforms, 

interrupts must be expected to occur at any time. They can even occur in the

same instruction of the I/O that starts an interrupt, which can rarely happen 

in the real life.

3.3.2 Time Management 

Unlike interrupt controllers, certain IPs such as real-time clock, watchdog

or timer deal directly with time management. The software written for such 

IPs must be aware of the time events like time-slicing, time-out or time-

count for running on TLM platforms. 

Timing is locally accurate on the untimed TLM platform. From the

software point of view, events are locally ordered within a given IP. 

Consider the following example: a given IP with two timers programmed for 

sending interrupts at different dates will always send interrupt events in the

well-coordinated order. Now, consider two distinct IPs with a timer in each.

Even if the two timers are programmed in the same manner, IP events could 

occur in any order because both IPs are completely independent from each

other with unspecified relative timing approximation.
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Luckily, it is quite uncommon to depend on the relative timings between

different IPs to run a software program correctly. For instance, time-out is 

usually implemented on top of a timer by the software so that it can be 

ordered continuously. Although the simulated time difference remains

unpredictable, it brings no problem since the software usually relies on time

order but not on time difference.

Testing scope is quite restrictive for timing aspects on the untimed TLM 

platforms as the timing accuracy is not really measurable. Low-level design

is thus reduced to validating the functions of interrupt and status indicators.

The timed TLM platform, however, offers larger capabilities in terms of 

timing testing.

Another important point on timing is time-slicing. When a dummy or 

buggy C program executes a “for(;;) continue;” sequence, it will keep 

looping forever. It is always possible to stop this loop by sending an 

interrupt, e.g. character typed or time-out, which can divert the execution

from the loop and eventually stop the loop. Running such programs on an 

ISS is well handled by TLM platforms. The untimed TLM platform manages

this program by advancing its timeline from time to time, even if the ISS 

does not require any I/O on the IPs. For example, the time progression can

take place when the ISS runs an I/O access; the internal SystemC scheduler 

can then be called freely to move forward the timeline. For the timed TLM 

platform, the rule is much stricter since timing accuracy is required. The ISS 

must access the internal SystemC scheduler (even for nothing) in order to let 

other IPs running their codes at the right scheduled time.

The approach is totally different for natively compiled applications as 

they are integrated into the execution environment of TLM platforms. Bear 

in mind that TLM threads are non-preemptive. If any thread happens to loop, 

no other thread can preempt it from looping and the TLM simulation will

just loop forever. To let other threads run, a special thread layer such as OS 

emulation can be of great help by simulating multiple OS threads within the

same SystemC thread. An alternative solution is inserting some calls to the 

internal “sc wait()” function at the right locations. This function will

essentially give a chance to the system to progress its simulation. Such 

situation is one of the very few circumstances where the software must

cooperate directly with the TLM platform. 

To conclude, software running on the TLM platform, especially when 

natively-compiled, must be capable of handling unpredictable time 

management.
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3.3.3 Performance-Accelerating Hardware Features

It is a general comment that TLM platforms do not simulate hardware

fast enough. Although this is always a personal perception, such moderated 

simulation speed might actually be very useful to detect some problems that 

may appear unobvious on fast-simulating platforms such as the real

hardware platform.

As a matter of fact, the reduced simulation speed is frequently a “bug

amplifier”. A subtle bug occurring for a very short time period could 

probably be invisible during the simulation on the hardware platform. The 

same bug, however, may turn into a disaster in a TLM simulation and thus

much easier to be detected and fixed. 

Suppose that a driver for a slow-communication IP does not use a DMA

correctly. The real hardware platform works so fast that it may conceal this 

problem on regular uses. The problem can only be revealed by an integration 

test where other IPs are involved to use the slow-communication IP 

intensively. The system will give an abnormal response time that serves as 

an indicator of such problem. A TLM simulation, on the other hand, shows 

the abnormal response time immediately because such problem will give the 

character-by-character output (1 character per transaction) instead of the

message-by-message output (N characters per transaction) that should 

normally be provided by the DMA use. Since the overhead of a transaction

is not negligible, a unit test is usually sufficient to uncover the poor 

programming of the DMA. 

The similar problem can be encountered in cache programming. If the 

cache is badly used or unused, the number of accesses to the TLM memory

will be unacceptably high. Software developers will consequently notice a

bus overhead rapidly, and thus identify a cache-related bug.  

Therefore, the moderated simulation speed on TLM platform provides

users with an early detection of misused features. This is extremely helpful 

for revealing those directly related to the overall system performance but 

hidden in a small local area for a long time. Indeed, these are very tough

features to detect because they appear functionally correct. It is the reason 

why some software programmers may not see the advantage of TLM “bug 

amplifier” right in the beginning. Once they get more acquainted with TLM, 

they will definitely find this characteristic rewarding.  

3.3.4 Peripheral Error Management 

Another critical piece of device driver software is the management of 

peripheral errors. In common practices, this software piece is only ranked as

secondary level of importance because the priority is always given to
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programming the regular peripheral uses. Unfortunately, the quality of a

low-level code like device driver is not in the regular working parts, but 

rather in the error management and recovery. 

Through modifying specific values in the setting, debuggers are used to 

“set up” and reproduce an error to facilitate the analysis of a particular fault 

in details. This method, however, will get a little cumbersome when an error 

comes directly from hardware devices. Too many registers will have to be

set up in debuggers for such bugs. Some manual intervention or script-

writing in debuggers is even required for certain cases. Consequently, such 

errors become extremely difficult to regenerate or reproduce “correctly and 

accurately”, for instance, in non-regression tests.

Let us consider the error management of the Ethernet controller. Under 

normal working conditions, the Ethernet driver is not in charge of any errors. 

For high system load, the driver must nonetheless face plenty of severe

conditions such as input errors, buffer underflow, out-of-buffer, etc. Under 

these conditions, the driver may decide to reinitialize the Ethernet controller 

while a simple recovery procedure could be sufficient. This technique works

most of the time but it may result in catastrophic performance consequences. 

For this reason, it cannot give good quality software although it functions

correctly. 

Such hardware-related error management is a real pain for software

developers. It consumes much time in understanding and coding yet brings

too little visible functionality to the software. Most of all, testing errors that 

practically never occur in a real system is too huge a challenge. Hardware 

developers do have hardware devices to reproduce specific errors easily. 

However, these devices may not be available for software developers. Even 

if particular hardware test sequences can be set up, they will not be suitable

for software error management.

TLM platforms are sound solutions for handling peripheral error 

management in device drivers. Software developers can simply inject data

from the external world into the platform IPs to reproduce specific IP

hardware errors. This error injection helps to test the behavior of device 

drivers when the error actually appears. Since the error is managed by the 

software, error sequences can be produced in the IPs as many times as 

required for running the error testing at high level of confidence. 

3.3.5 Native Compilation 

Native compilation is the fastest TLM simulation system for software. 

Although irresistibly attractive, it must nevertheless be employed with 

meticulous care for a number of potential pitfalls. In particular, software

codes must respect the underlying restrictions rooted in the fact that the 
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software is link-editable with TLM platform codes, i.e. TLM platform codes 

will be embedded together with software for running. 

The most obvious restriction is the non-exclusive use of shared resources.

Software must never “monopolize” common resources shared with TLM 

platforms such as heap memory, signals, file descriptors, etc. For instance,

the signal handlers from software codes should never replace but add onto 

those already existing in TLM platform codes; in the same sense, the

allocation order of file descriptions should never be deduced from the one of 

the underlying OS algorithm. 

 Software codes must never be based on libraries or software compilation 

tools that are incompatible with those required by the TLM platform codes.

A simple example can be illustrated by GCC compiler. It is well known that 

the GCC-2.95 release is incompatible with the GCC-3.x release for C++ 

programs due to changing of name mangling algorithm. If a software 

program compiled with GCC-2.95 is link-edited with TLM platform codes 

compiled with GCC-3.1, the link-edit will fail indicating that a problem 

exists or worse, the link-edit will seemingly succeed but the execution will 

crash without any obvious reason. 

In the same line of idea, another interesting point is dealing with threads.

Threads used in a software program must be compatible with those used in

TLM platform; besides, they must respect the reentrancy programming

constraints of TLM platforms. In other words, only threads compatible with 

SystemC runtime are allowed for TLM-oriented software codes because 

TLM platforms are based on SystemC runtime. For example, only one OS 

thread is permissible in the OSCI runtime, which restricts uses of SystemC 

threads and those simulated within a SystemC thread. In addition, the 

software thread scheduling has to be compatible with the one used in 

SystemC. The reason is that SystemC functions are not required to be 

implemented as reentrant; for instance, the current thread scheduling of 

OSCI runtime is neither reentrant nor thread-safe. 

Debugging natively compiled software is much more complex as it is

based on the SystemC runtime. There are two major difficulties. First, 

software developers may perceive codes out of their control, i.e. TLM

platform procedures called when their own code access IP registers. Stack 

frames can be quite confusing as well because it may not be easy to locate 

the frames at the exact spot where the software really starts. Second, 

software developers may not see all of their threads if their codes are multi-

threaded. The reason is that their threads are embedded in SystemC threads, 

which may not be visible to debuggers, e.g. the current case for OSCI

runtime. Today, debuggers are not much adapted yet for certain non- 
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standard environments such as multi-thread wherein hardware and software

simulations are mixed.   

Despite all these pitfalls, most of our low-level software runs perfectly

well in the native execution environment. In fact, such pitfalls or constraints

appear mostly in very high-level software that will be discussed later on. In a 

nutshell, native compilation is a simple method to start working out low-

level codes. It also assists in rising code portability because the same code

should run in cross compilation as well where no such constraints apparently

exist.

3.4 Examples of TLM-oriented Device Drivers 

Without any practical examples, all the approaches described earlier 

could probably be too theoretical to digest. Let us zoom in on the details of 

some low-level software already running on TLM platforms through our 

development work.

3.4.1 SPI Controller Test 

The Synchronous Peripheral Interface (SPI) is a very popular protocol

widely used in the industrial environments to enable data exchange between 

a micro-controller and an external peripheral. Instead of plugging a given 

peripheral directly on a system bus, it is much easier to connect them 

through a serial interface whose major advantage is the reduction of 

communication pins. The SPI protocol is founded on the data exchange

initiated by a master to a slave at a clock rate determined by the master itself. 

At each clock signal, the slave must be ready to receive a bit and send out 

another.

SPI controller tests involve two strictly distinct parts: testing SPI master 

and/or slave. Data exchange is the principal of testing SPI controller. A fixed 

set of data must be provided to the SPI controller for exchanging between

the master and slave sides, the aim of which is to validate the SPI behavior. 

Let us take a closer look at testing an SPI master role (SPI slave role will

have a similar testing line). In such test, no SPI slave device is utilized.

Instead, it is replaced by a file containing data to be exchanged with the SPI

master. The SPI master is exercised by software actions; it also receives the 

input data from another file holding exactly what it expects to receive. When

the software sends a data item such as a byte or something larger to the SPI

master, the TLM IP of SPI master controller will read the next data item 

potentially being sent from the data file representing the SPI slave device.

The data read from the latter will then be placed in the registers of SPI

master as if it was received in the real situation. Depending on how the 
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software is programmed, the TLM SPI master may update its registers after 

storing this data. 

By comparing the data received from both master and slave sides (more

precisely, from their respective data files), the tests of sending/receiving SPI 

data are carefully conducted by the TLM SPI master controller. Complex 

data exchanges can certainly be set up, for instance, those including DMA or 

end-of-transmission interrupt. The validation of SPI data exchanges helps to 

justify not only the correct functioning of the IP, but also helps to verify the 

right software programming of the IP registers. With a successful validation

of SPI data exchanges, the same software should result in the same test 

behavior on the real hardware IP that is available later (provided that the SPI 

slave is correctly simulated by the data file). 

Testing a given IP is unfortunately not only limited to its functional tests

especially when the IP is synchronized with the external world. In particular,

it is impossible to test if the clock programming fits in as required by the 

slave since the test is not timed. The IP test set will be incomplete if there is 

no synchronization between the master and slave. If the master acts too fast, 

the slave will not be able to respond in time. However, the master will still 

sample the data line coming from the slave to deduce the value transmitted 

by the slave. This deduction could be incorrect if the timing is wrong. 

Although the timing programming may be validated statically on an untimed 

TLM platform, this may not be sufficient.

For that reason, there are two conditions to fully test an SPI IP. First, a

timed TLM platform is most of the time compulsory. Second, a mechanism 

allowing the simulated slave to analyze the timed master responses is

required for validating the correct timing of the master. This example 

illustrates how and when different TLM platform implementations should be

employed for various purposes. 

3.4.2 I
2
C Controller Test 

The inter-integrated circuit (I2C) bus is a bi-directional two-wire serial

bus providing a communication link between integrated circuits. The main 

difference of I2C from SPI is that I2C supports multi-master mode: I2C

allows multiple master devices to connect on the same bus to start the

communication at the same time. The collision is  resolved electrically, and 

only one master remains the master of the communication.

I2C is much more complex than SPI. SPI slave is equivalent to SPI

master except for the clock generation, whereas I2C slave and I2C master

exchange control information such as address, acknowledge, and start/stop 

right on the bus. This is a sophisticated feature needing software for testing.
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For this reason, it is essential to have at least two devices on the bus for 

testing I2C: a master and a slave. TLM platforms normally provide a single 

I2C controller that represents a single device on the bus, which supports

either multi-master mode or exclusive master-or-slave mode. Unlike SPI 

controller, the second I2C device cannot be replaced by a file because the 

control information exchanged on the bus will not be tested. The simplest

solution is therefore setting up another I2C controller on TLM platforms

exclusively for testing. It generates and validates the required bus control

information, and its mapping is done on unused addresses. 

Once the two devices are properly set up, the I2C controller test can start

from any mode. The major challenge of such test is to synchronize the test 

software precisely between two similar collaborative IPs. While sending 

information from one of the IPs, another IP must be controlled for its correct 

receiving of whatever previously sent by the first IP. Polling is not a good 

tactic because both IPs must be polled concurrently, but interrupts from 

either IP could arise in any order. 

The testing schema describe above is insufficient to test all I2C features.

For instance, the feature of master arbitration lost1 in the multi-master mode 

can only be tested when both IPs agree to set up the same testing condition.

Then again, this set up cannot be done by regular register I/O. The same 

problem may arise in testing all communication errors such as non-

acknowledge testing.

Just like SPI controller test, I2C controller test is capable of testing many

interesting functional features of the IP before the hardware is ready. It helps

to show that the platform runs correctly under standard conditions. This is 

essentially the first step towards getting a validated TLM platform for 

running real software programs, particularly real device driver codes.

3.4.3 PrimeXsys UART Linux Driver 

The ultimate goal of TLM platforms is not developing test software for t

IPs, but running actual device drivers that will be used on the real hardware 

platform. Certainly, all events especially errors cannot be triggered to occur 

as exactly as under real-life conditions. They will however be tested under 

standard conditions, thus representing the actual behavior most of the time.

An excellent illustration for this concept is the behavior analysis of a real 

device driver running on a TLM platform. Theoretically, a device driver 

should run correctly without any modification in the cross-compilation

1  A feature with an I/O starts functioning as a master, but the I/O will become a slave when 

another master wins the exclusive access to I2C bus (Arbitration).
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mode. Let us study the Linux device driver for the UART on the ARM

PrimeXsys platform. This driver is initially compiled with the rest of Linux

for the ARM PrimeXsys platform. It is then booted on an untimed TLM 

platform without any modification but some additional error messages for 

testing purposes. 

The experiment shows several interesting side effects. First, the output of 

messages is very slow. The usage message of ls command takes longer than 

the booting of Linux kernel to display. A closer examination reveals that the 

DMA is not configured by default for the UART even if the codes are 

identical. The driver is functionally correct except that an important feature, 

i.e. DMA, is missing. Although coded, this missing part is not visible

enough on the real ARM PrimeXsys platform. In contrast, TLM platforms 

manage to “amplify” this problem because the missing DMA changes the

behavior of TLM platforms significantly. Software using buffered C runtime 

stdio output routines such as printf, putc, and puts, running on TLM 

platforms with DMA display a message per transaction while those without 

DMA () display a character at a time. 

Once the problem is fixed, the DMA is enabled in the platform. Yet, the 

performance still does not show the expected results. All messages are 

output very quickly but a noticeable delay occurs between usage messages

of the Linux ls command. Another problem is then identified in the TLM 

code of UART IP. The added delays in the output for simulating the 

programmed UART baud rate actually slow down the entire simulation

process of UART driver, the reason of which is the ARM platform has

nothing else to do but displaying messages. By removing these delays, the

UART driver can finally give satisfactory performance results. Indeed, this

“discovery” is interesting because time characteristics must be simulated 

(even on untimed platforms) but with flexible and careful adaptation. 

To sum up, running the UART Linux driver on the ARM PrimeXsys

platform demonstrates the following benefits of TLM platforms:

1. Device drivers can run without any modification in cross-compilation. 

2. Missing performance features can be detected without any special 

tests on TLM platforms (e.g. DMA).

3. Poorly coded software is immediately revealed by running real 

software on TLM platforms. 

3.4.4 Native Device Driver 

Device drivers are not only coded for running in the cross-compilation 

mode. Running them in the native mode can be equally beneficial for 

software developers as long as certain coding rules are well respected. 
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Performance and code portability are the two chief advantages. Software 

programs can run much faster in the native mode than in the cross-

compilation mode, hence higher performance. They can also be compiled on 

a machine with different constraints such as data alignment, byte order, and 

language basic types to increase the code portability. 

Embedding the software codes of TLM platforms is a very distinctive 

characteristic of the native environment. It obliges the respect of the host 

execution rules, including reserved addresses, dynamic loading, name space 

pollution, etc. These obligations can be very tough barriers to deal with

when developing huge software pieces. It is not straightforward to execute 

both software programs and TLM platforms nicely in the same environment. 

Beware that all these problems may arise during a project, although huge

amounts of code have already been ported in such environment.

The first rule for developing native device drivers is to facilitate the 

contact point between software codes and TLM platforms. It is usually 

achieved by using IP register accesses. Such contact in cross-compilation is 

simply the simulation of a foreign instruction at a given I/O address, which 

is translated by the ISS into a TLM transaction. TLM platforms just need to 

issue the I/O and the corresponding results will be given back to the software

by the ISS during the simulation of the same instruction. The software in 

native compilation, conversely, must issue the required TLM transaction by 

itself. Therefore, the compilation of IP register accesses will need to be 

transformed into a TLM transaction at the lowest software cost. 

Wrapping in macro register accesses is recommended as a good software 

coding practice. It is particularly useful for increasing software portability 

onto those systems needing special instructions to access I/O spaces such as

I386. Such macro wrapping facilitates the definition of a separate set of 

macros for the native mode, hence leading to highly portable software. The 

macro wrapping cannot be applied if register accesses are coded as mapped 

address dereferences. The reason is that the address range in this case is 

more likely forbidden to be used in the host execution environment. The 

initial solution is thus code modification, which may entail additional time 

delay in the software development exclusively for native compilation.

Another point of attention is accessing the memory shared between the 

software and hardware for data representation. When everything is ready to 

be analyzed in an IP, the hardware normally expects to download from the

shared memory some data that is already formatted by the software. A good 

example is a DMA scatter/gather list. Such data representation is a real 

complex problem because: 

1. The simulated hardware may have different byte ordering from the 

host system. 
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2. The simulated hardware may align data in a way incompatible with 

the alignment rules of the host system. 

3. The software may use different data types for cross and native 

compilations, e.g. the “long” type of C language. 

There are several good practical rules applicable to solving this situation 

nicely, which are similar to those used for IP register accesses: 

a) Always use fixed length data types so that the field length definitions

are not ambiguous, e.g. “int32_t” type of C-99 language.

b) Always access shared data with macros that can be redefined 

correctly in case of incompatible byte ordering or alignment.

Name conflict is a much tougher problem to solve. Fortunately, it is not 

something that happens very frequently. This sort of conflict occurs when

the software uses an external name that is already defined by the TLM

platform. By some chance, the link-editor may detect this as an error. There

is however a slight risk that the link-editor may merge it quietly at the same 

location in the common data segment. That will very likely lead to

concurrent use of the same memory location by two modules without 

relationship. It is then easy to imagine the kind of errors provoked by this 

bogus situation. Such problems can arise either in static or dynamic link-edit 

where search results of external names are often hidden by high-level

functions..

Sadly, there are not too many solutions for this problem. To cope with it, 

avoid such naming conflicts by prefixing (or using different name spaces)

the external names and minimize using global variables. Name conflict is not 

a problem directly related to TLM platforms, but it is often encountered by 

software designers developing huge software pieces. 

Concisely, a very important point here is that TLM imposes good 

software coding practices to prevent some tricky problems from happening

during the earliest stage of the development.

4. TLM-ORIENTED OS/FIRMWARE 

4.1 Introduction to OS/Firmware 

Recall Figure 4-4 shown previously, the software family located above

device drivers covers OS (Operating System) and Firmware.  

OS is a higher-level software family responsible for integrating all lower-

level software pieces to set up a coherent view of the hardware management.

Such responsibility is generally entitled to Operating System or Executive 
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Runtime, which presents a programming interface to higher-level 

applications.

A key difference exists: Operating System shares CPU time between a 

large variable set of tasks that are scheduled only when they have something 

to do, whereas Executive Runtime shares CPU time between a small fixed 

set of tasks that are called at regular intervals for testing event occurrences

and performing potential job. A common point between them is the ability to 

manage the conflicts of resource accesses for an optimal use of the hardware 

platform. 

Operating System is essentially a piece of complex software for 

managing task preemption and switching, hardware interrupt dispatches,

collaboration between low-level device drivers, etc. The task management

role of Operating System is even more distinct when it provides real time 

functions. Executive Runtime, on the contrary, is considered as a simple task 

scheduler that neither has potential preemptions between tasks nor interrupt 

handling; and it has virtually no overhead for task switching. Both of them 

are of course relatively far from each other in terms of functionality, but they

will be considered and described collectively as a single entity called OS toS

cover the two task areas aforesaid. 

Another group of interesting software in this family is Firmware. It is the 

software piece responsible for driving some processing parts embedded on

the hardware platform. Firmware usually receives and manages specific jobs 

from an external entity. It therefore plays a mid-level role by unloading

some jobs that can be managed locally from the CPU. Such role can be

endorsed by running some software on a digital signal processing (DSP) unit 

to control certain IPs directly for high-level data exchanges with the CPU.  

4.2 Purposes of TLM in OS/Firmware Development 

Using TLM platforms throughout the development of OS/Firmware 

serves an important objective: it integrates all lower-level device drivers and 

executes them in parallel to detect software (potentially hardware) problems 

related to the interactions of multiple data flows. Such problem detection is 

either a direct mode by sharing a device driver between two data flows, or an

indirect mode where the activities on a data flow prevents another data flow

from being correctly managed. 

4.2.1 Integration Test Suite Development

As discussed earlier, unit tests are developed for testing a given IP 

individually (two IPs are required occasionally). Such tests are much limited  
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to testing a single IP without testing the rest of the platform IPs 

simultaneously. If all unit tests of a platform are pulled together, it is 

possible to set up an integration test suite provided that the unit tests are 

developed to run as either standalone tests or concurrent tests in common 

with other tests. 

Therefore, it could be quite easy to set up an integration test suite based 

on the available unit tests. For a given IP, all of its unit tests can be serialized

to form a set of unit tests reserved for this IP. Such unit test set for all IPs

can then be run collectively at the same time to exercise all IPs concurrently, 

hence leading to a proper integration test suite. 

This approach, nevertheless, is not that straightforward for untimed TLM 

platforms. Due to their untimed characteristic, setting an I/O transfer via a

register write is virtually immediate. Thus, no I/O parallelism can have 

effect in the set of IPs under test. Moreover, an interrupt will be triggered as

soon as a register access is completed if the interrupt mode for I/O

completion signaling is used. It is possible to chain all these tests in order to 

run them one after another. Yet, this is still not quite a real integration test 

suite.

The missing part is an executive runtime that can run one test after 

another. It should avoid running the entire test set of a given IP right after 

running the entire test set of another IP. A better way to handle this is 

running interleaved tests in order to exercise all IPs more frequently.  

On the contrary, an integration test suite can be set up very nicely on 

timed TLM platforms. The reason is that each I/O consumes some time to

signal its completion, and that consequently allows running multiple tests for 

different IPs in pseudo-parallelism. The term “pseudo” signifies the fact that 

I/O completion time is accurate but its progression is without cycle accuracy.

Integration tests should also be in charge of testing arbitration, i.e.

hardware conflict resolution. The typical examples of such conflict are two 

concurrent interrupts or I/O bus accesses. Interrupt conflicts can be validated 

on timed TLM platforms whereas bus access conflicts can only be tested on 

BCA platforms.

In brief, integration tests are merely some test set on untimed TLM

platforms; they provide much more interesting results on timed TLM

platforms; and finally give solid outcome on BCA platforms. Therefore,

TLM platforms should be considered as initial test platforms where 

integrations tests are executed and debugged before other further accurate

platforms are made available. 
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4.2.2 Quick Application Software Evaluation  

An attraction for using TLM platforms in OS/Firmware development is

the quick set up of a complete system integrating hardware and OS, whichk

aims at evaluating external higher-level application software. Throughout a

new SoC development, it is always a challenging mission to validate if the

design meets the software requirements until the software really runs on it. 

The early availability of TLM platforms allows software developers to get a

precise image of the final hardware platform for running software ahead of 

time.

Today, the standardization of interfaces and low-level services such as 

Windows, POSIX, OSEK, and iTRON has facilitated the implementation of 

such interfaces on top of a number of Operating Systems. As a result,

higher-level software can be ported much easier from one platform to 

another. Combined with TLM platforms, these interfaces and low-level

services offer high-level software developers a complete system that is ready 

to support high-level software. Depending on their levels of accuracy, TLM

platforms serve extensively as evaluation systems that support major OS 

available today.

A complete system consisting of OS, device drivers, and TLM hardware

platforms is essentially the very first integrated system accessible to high-

level software developers. Such a complete system holds several important 

characteristics as follows:

1. It is not restricted for large deployment since it is purely software; the 

number of systems available for using is thus not limited to just a few

fragile hardware boards. 

2. It implements a realistic system platform whose accuracy depends on

the accuracy of TLM components and the software integrated.

3. It provides a platform with a coherent behavior of all integrated 

platform parts, i.e. both hardware and software.

4.2.3  Closed Integrated Software Module 

During the development of OS/Firmware, TLM platforms also serve the

purpose of employing black box tests and pure binary software codes.  

TLM platforms are established as accurate representations of some

existing or upcoming real platforms Thus, they must support binary software 

codes intended for running on the real platforms in a transparent and reliable

manner. Software developers count a lot on this feature to prove not only the

accuracy of TLM platforms, but also the correctness of their software with t

respect to the real platforms. 
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Note that this particular characteristic is only necessary for cross-

compiled platforms because it is worthless to set up binary software for 

some platforms that will never exist. A prototype can hardly provide the 

same feature described here because it will never be accurate enough to run 

binary software codes as a black box test. This is also hindered by other 

reasons such as netlists, definitions of IP registers, component timings, etc.  

To conclude, running pure binary software codes on TLM platforms have 

two ultimate goals:

1. Validate the TLM platforms when the real hardware already exists 

with the same software.

2. Validate the software provided as binary codes with some extensions,

which are developed for supporting additional hardware features on a 

new platform compatible with some existing ones. 

4.3 Approach to OS/Firmware Development 

OS or Firmware developed for running on TLM platforms are not 

directly related to the hardware simulation. They should consequently be

less sensitive to certain low-level details implemented in TLM platforms. 

Bear in mind that OS/Firmware is a special software layer responsible for 

the employment policy of the mechanisms defined by lower software layers.

This is exactly where meticulous care must be taken to handle the

capabilities of TLM platforms correctly. The approaches to developing 

OS/Firmware mainly focus on how to get a complete hardware/software

system to run efficiently without wasting simulation performance in useless

tasks.

4.3.1 Active Waiting Loop Avoidance 

The foremost software quality is being able to utilize the underlying 

hardware at the optimal level. This is nevertheless quite a tricky game to

play with on a simulation platform such as TLM. Since the hardware parts of 

a simulation platform are merely some simulated models with various 

accuracies, certain programming techniques may appear inefficient in the

simulation run although they may work reasonably on the real hardware. The

main reason is that some trade-off between performance and accuracy must 

be made on simulation platforms.

 The active waiting loop is an example of the programming techniques

difficult to be adapted on simulation platforms. On the real platform, such

software will loop perpetually through a list of awaited events until one of 

the events finally occurs. The same software technique runs in the same way 

on TLM platforms but less efficiently, as the hardware event will only occur 
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when the software allows it to occur. The software run indeed prevents the 

parallel run of TLM platforms, which is supposed to raise the subsequent 

event waited by the software.  

This situation is similar to a deadlock but not fatal because the software 

might be preempted sometimes. Rather, active waiting loops are considered 

unproductive since the system cannot evolve during their execution. Keep in 

mind that events are driven by the hardware speed on the real hardware 

platform for which the real time is continuous, whereas events are driven by 

no previous activity on TLM platforms for which the simulated time is 

discrete.

Therefore, it will be wise to have useless software suspended until the 

next hardware event occurrence. The software should then loop again until it 

finds the occurred event. Since such software loop is sensitive to hardware

events, it is not easy to program it transparently for either the real or TLM 

platforms.

Actually, new requirements for low-power consumption on SoC have

helped to solve this tricky problem. Under this concept, any software with 

nothing constructive to perform will simply switch to the low-power mode 

to wait for the next event. Such switches are handled by some hardware 

interactions on TLM platforms, which can subsequently advance the system

to the following event in line. Essentially, this is what will really occur on

the real and TLM platforms. The low-power feature therefore avoids the

active waiting loops and enables the same binary software to be used on both 

platforms with equal efficiency. Without the problem of active waiting

loops, TLM platforms are once again ready to drive software towards the 

better use of the underlying hardware.

4.3.2 Hardware Interrupt Management

Interrupt management is another problem similar to the active waiting 

loop. Normally, starting an interrupt I/O on the real platform takes some 

time. The software will not just wait for the completion of the I/O event by

doing nothing. Instead, it will try to perform some other useful jobs while

the hardware processes the I/O work. This is feasible for the software only if 

the hardware takes long enough to notify interrupt events. As discussed 

earlier in the interrupt management for device drivers, receiving interrupts 

too early could be unfavorable as the software may not be able to perform 

other useful jobs or may even spend more time in handling the interrupts. 

This is particularly true for the management of input device events arriving 

at unknown (or very high) frequency. 

Looking at the whole picture of a system design, a given software should 

run equally well either on the real or TLM platforms. Similarly, polling and 
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interrupt modes implemented in the software should be valid for both

platforms despite their different performance behavior. 

Recall that OS/Firmware involves more than a single device driver.

There is a potential side effect of using immediate interrupt notices. It may 

happen that the software reads data from a hardware source that always 

acquires ready to-be-consumed data. On the real and timed TLM platforms, 

acquiring data consumes some time that the software can run other tasks

while reading data. However, on untimed TLM platforms, it occurs that

interruptions related to I/O completion are somewhat instantaneous

following their respective I/O activation, which may lead to a kind of 

apparent execution starvation for other processes. Polling is therefore the 

better solution for handling interrupts on untimed platforms.

To prevent such misbehavior that the software cannot avoid by itself,

certain safeguards must be provided in TLM platforms. These safeguards 

will serve as the guidelines to standardize the software codes running on 

different platforms, because software designers develop their software based

on the TLM platforms provided to them. 

4.3.3 Native vs Cross Execution Environments 

Native versus cross software compilations are discussed in sections 3.3.5

and 3.4.4 to describe the compilation nature of low-level software like

device drivers. Regarding higher-level software such as OS/Firmware,

software developers must consider carefully some different behaviors

introduced by its execution environment.

Performance is always much faster on a native platform than on a cross 

platform. This is the reason why most of the SoC developers tend to use

native compilations for their TLM platforms. Such high performance,

however, is not as easy to reach on OS/Firmware layers due to certain

processor-specific features that are tough to cope with; among them the most

noticeable ones are the virtual memory management, the code and/or data 

cache management, the execution and interrupt paths, which are clearly 

under the responsibility of OS/Firmware.

Another important concern for the execution environment is the strategy 

of software debugging. On the real hardware, software developers debug by 

either plugging in additional hardware pieces to control program execution

or embedding software debuggers in the OS/Firmware codes. The most 

common solution is based on the Joint Test Action Group (JTAG) and some

hardware extensions such as In-Circuit Emulator (ICE) or User Debugging 

Interface (UDI) for a complete execution control, while the latter is based on

the low-level CPU control.
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JTAG and other hardware-based solutions are not practical for TLM 

platforms because they are too dependent on the hardware availability. On 

one hand, embedded software debuggers can only be supported in cross-

compiled environments, but on the other hand, they can benefit from the

precise debugging information via a debugging server that can stop ISS at 

the granularity of an instruction. This is relatively much easier compared to 

the real platform on which software debuggers must trap current execution 

flow on the real processor by exception, hence causing an intrusive

debugging process. The direct impact of these differences is that the 

debugging strategies might not be similar between the real and TLM

platforms. For native platforms, the only debugging solution is using host 

debuggers with some proper adaptations as explained earlier in section 3.4.4. 

4.3.4 Virtual Memory Management 

An important software aspect dedicated to OS/Firmware management is 

the Virtual Memory Management, namely the handling of the mapping

between physical pages (the ones actually in memory), and their association

in the standard addressing schema. This is usually achieved either via a

Memory Management Unit (MMU) or via a TLB Translation Look-aside 

Buffer (TLB), internal to the CPU. 

Under the cross-execution, the ISS is responsible for such management,

and the TLM platform only receives accesses to physical addresses. This is

however a costly management as each memory access must be translated 

from virtual to physical addressing space, which relies on search tables. The

main advantage is that the accuracy of the management is high, and that all

MMU-related traps are notified to the OS. 

Since performance is the main problem of memory management, then it 

could be useful to take native compilation into consideration. The main 

problem now is to get the maximum possible accuracy in order to be in a 

simulation environment providing enough realism for software development. 

The first thing to remember is that the embedded OS and firmware

usually have nothing to do with on-demand page swapping (i.e. the ability to 

put unused memory pages on secondary memory such as disk drives). The

memory management is restricted to the ability of running multiple 

applications within a finite amount of memory, which is more of a memory

placement problem rather than virtual memory management problem: if all

of the applications are not able to fit into the available memory, then the

system cannot work safely. 

This is the reason why for OS/Firmware coming with source code, the 

most efficient approach seems to replace virtual memory management by the 
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dynamic placement of all the processes in the virtual memory of the TLM 

platform execution. The main advantage is the performance gain, as there is 

no overload of translating virtual addresses to physical ones (the code and 

data addresses are relative to a register and allocated memory areas being 

directly accessed). The main drawbacks, on the other hand, are the non-

protection of a process data against erroneous accesses (by itself or by other 

processes).

This solution can be applied with Linux, for which µClinux is the right 

and most efficient solution. The reason is that OS provides the same API not 

only to user-mode applications, but also to dynamically loadable kernel 

modules such as device drivers, file systems, etc. Such pieces of software

may be almost completely and transparently tested and debugged within a 

MMU-less environment, and then integrated into a cross-integrated TLM

platform with complete MMU support for final validation.

4.4 Examples of TLM-Oriented OS/Firmware 

The current section provides a brief description on some OS/Firmware 

examples already running on TLM platforms through our development 

work. These practical examples illustrate how some approaches described 

earlier are used. 

4.4.1 Quick Setup of Integration Test Suite 

As soon as a TLM platform is set up, the immediate subsequent step is 

running unit tests for every IP of a platform. These unit tests must be 

conducted IP per IP to evaluate the correct functioning of each IP. Once the

first step succeeds, the next step is running integration tests to validate the 

integration of all IPs in the TLM platform. This step is particularly important 

for validating the areas that necessitate arbitration for handling concurrent 

accesses to shared resources such as bus or interrupt controller. 

Since parallelization is required, an integration test must be written to 

deal with more than a single IP at a time. Moreover, integration tests need a 

test harness to optimize the pipelined execution of all IP unit tests and to

exercise all IPs in parallel on a given platform. The test harness referred to

here is indeed an Executive Runtime that schedules each task to manage a

single IP. It may also include interrupt management to validate the right 

functioning of the shared interrupts. Another advantage of the Executive 

Runtime is its ability to handle multiple IP tests such as the I2C controller 

test described in section 3.4.2. Test codes for each platform IP is placed in a
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different task scheduled by the Executive Runtime in order to retain the

paradigm of managing an IP per task.

A test set should be arranged to complete properly because an Executive

Runtime does not really stop by itself. It is vital to ensure that there is 

definitely nothing else to execute in order to terminate the integration test 

correctly. A good practice here is to let the underlying SystemC runtime

“discover” the simulation completion by having no more events to handle. In

this way, the simulation will exit without returning to the software; hence 

avoid having the Executive Runtime to deal with the test termination. 

4.4.2 OS on ARM PrimeXsys Wireless Platform 

The ARM PrimeXsys Wireless Platform (PWP) is an extendable

development platform whose description is open to the public2. Software

developers can understand this complex platform much better by running a

simulation on the TLM platform of ARM PWP.

Booting an OS on PWP aims at verifying the software behavior on both 

simulation and real platforms. It could be really challenging to boot an OS 

binary image on a cross-compiled platform if a bug appears in the OS code

execution. The core architecture assembler is the only accessible debugging 

level, which is unfortunately not so obvious to get information from. Bugs 

found in this type of simulations are usually related to some subtle behavior 

differences between the real and simulated hardware. If the source codes are

unavailable, tracking such bugs becomes much tougher.

The first right approach is to run an OS whose source codes are available, 

for instance, running Linux on PWP. In general, an ISS-embedded debugger 

is aware of the OS object format and thus capable of conducting symbolic 

debugging. If the debugger recognizes the structure of the internal threads,

the whole OS execution structure can be exposed through the debugger 

interface. As a result, the debugging process becomes much easier to control.

This process is a little more difficult in the case where MMU is handled by 

Linux because the debugger must understand the virtual memory translation.

In this case, it is easier to start running the platform with uCLinux, i.e. the 

Linux without MMU port. Once the PWP TLM platform is extensively

exercised by this OS, it is time to get some binary OS such as Windows or 

Symbian running on the platform.

Booting OS on TLM platforms is advantageous. It gets ready a complete 

platform for software developers to design high-level software. In addition, 

it helps to find missing or incorrect OS codes that are virtually invisible on 

2 Available at http://www.arm.com/products/solutions/PrimeXsysPlatforms.html 
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native platforms. A real-life example is the public code of PrimeXsys Linux

for the ARM926EJ-S platform. By comparing the TLM simulation to the

one of real platform, two errors are found in the public code. We notice that 

the bootstraps for cache enabling as well as the UART accesses to DMA are 

too slow on TLM platforms while they appear apparently correct on the real

platform. This example shows the direct advantage of TLM simulations. 

4.4.3 Native OS Emulation on Video Platform

The video platform is an interesting platform type to learn more about 

TLM concepts. As the video flood flows from one IP to another, the central

processor only acts as a director without a straight view of the video flood. 

IPs are generally complex hardware pieces that run some firmware on top of 

an internal micro-controller.  

Simulating precisely all IPs on a TLM video platform is not quite 

feasible because not all IP models are made available quick enough for 

software developers. It is possible to build accurate TLM models of these

complex IPs and integrate them as a single TLM platform. The resulted 

performance, however, is very likely to be slow. Bear in mind that one of the

primary goals of video platforms is the pipelining of the video flood. Video 

components are therefore designed to run in parallel. Each of them must also

run its associated code accurately, and that will consume many CPU

resources. Consequently, the sum of such consumption will result in a very 

slow platform. 

Running software on a simulated platform is nevertheless still very 

important for software debugging. A different approach must be adopted to 

cope with the problem of slow simulations. The proposed idea is splitting a 

given platform into simpler but meaningful hardware pieces for software

development. 

In other words, if the software perceives a specific IP block and its

associated firmware as a black box, then a single TLM model is conceived to

represent the whole IP block including the associated firmware. Sometimes, 

software developers may need to debug both software and firmware on the 

same platform. In that case, software developers must set up the platform in 

such a way that the internal IPs and their associated firmware are exposed. 

The benefit of such platform setup is the close simulation of the IPs 

whose associated software requires debugging, while maintaining the overall 

platform performance at an acceptable level through keeping other IPs as

efficient black boxes.

Native emulation is the suitable solution for working with the firmware

of complex IPs because it retains both performance and functional accuracy

of IPs. In addition, debugging the whole platform in native emulation allows 
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grabbing an image of the OS running on the central processor and the 

firmware running on the IPs of interest. Therefore, it is feasible to analyze

the interactions between all the software running on the different IPs at the

same time, or even in the same debugger session. 

Having TLM models as black boxes of IP hardware and their associated 

firmware may have some impact on the OS drivers managing these IPs. If 

the firmware is encoding/decoding a well-established algorithm such as MP3

or MPEG4, it will be quite straightforward to set up an IP model running the 

similar code but with different interfaces. There are two solutions for the OS 

driver:

1. adapting the driver to the simulation interface, i.e. a fast solution; 

2. adapting the simulation software to the IP interface, i.e. an accurate

solution.

Both solutions are valuable approaches that should be applied at different 

phases of the SoC design process, depending on the expectation of the 

software development. The accurate solution, however, should be retained 

once it is available because it allows debugging the actual OS driver.

5. TLM-ORIENTED APPLICATION SOFTWARE 

5.1 Introduction to Application Software 

Although the two lower-level software families i.e. device drivers and 

OS/Firmware bring interesting results, the ultimate goal of software 

developers is to get the final application running on TLM platforms as soon

as possible. This high level is probably the easiest to set up on TLM

platforms because it has very little or no relationship with the actual 

hardware programming.

Building and running a complete application on TLM platforms is an

ambitious objective to achieve. In common practices, applications normally

run on a prototype of hardware board whose central SoC is only a part of the

board. Today, the implementation cost of hardware prototypes is 

skyrocketing due to the explosive SoC complexity. Running applications on

a much more complete platform like TLM is therefore getting increasingly 

attractive for SoC developers. The TLM platform is not only a hardware 

platform that is accurate enough and available significantly earlier, but it is

also able to easily outperform the equivalent RTL platform.

By running the critical software parts interacting frequently with the 

lower-level software, software developers should gain enough confidence 

that the application is ready to be integrated as soon as the prototype of the 
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final platform is available. The critical software parts already layered and 

packaged as independent libraries such as protocol stacks, data stream

decoders, all sorts of data filters, graphical environments are among the most 

essential parts to be verified in this manner.

5.2 Purposes of TLM in Application Development 

5.2.1 Final Validation Test Development

Once integration tests are completed, validation tests can be started. A 

validation test exercises a given platform in the environment that it is 

specifically designed for running in. The principal idea is to define a set of 

representative test scenarios intended for the final platform execution, i.e.

the highest level of tests that a platform must go through for its validation.

Validation tests are crucial in assuring the accuracy of the integration of 

TLM platforms. These tests aim at demonstrating that TLM platforms

behave exactly as they are designed. If TLM platforms show their high 

fidelity to the hardware platforms, the same validation tests should provide 

the same level of confidence on the real hardware platforms. 

Since accuracy is a characteristic that becomes more critical close to the

end of SoC development, a validation test will emphasize more on the 

accuracy of a platform than on its performance. For this reason, running

validation tests can sometimes be very time consuming. The focus of 

validation tests is on the whole software rather than on the TLM platform 

because the objective is to try out the TLM platform in the real environment. 

It is vital to have validation tests running in a simulation environment 

that is as accurate as possible in order to test the internal behavior of the 

platform. Thus, TLM platforms must interact with the external world at the

highest possible accuracy. This requirement is less strict for the previous two 

lower-level software families because their main purpose, i.e. testing TLM 

platforms, is different from the one of validation tests for high-level

software. As such, validation tests can be considered as part of the

interoperability tests.

5.2.2 Performance Experiment 

While the OS/Firmware is sufficient to demonstrate that a platform is 

functional by itself, the application software is intended for providing

additional feedback from TLM platforms. More precisely, it places TLM 

platforms in a real application environment wherein non-functional results 

can be obtained from the whole system.
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Such non-functional results can be considered altogether as performance

results, covering timed profiling (e.g. latency, speed, throughput, deadline),

untimed profiling (e.g. counter, contention, bottleneck), and other factors

such as power consumption estimate, security evaluation, fault tolerance, 

resource footprint, etc. Without TLM platforms, it is almost impossible to 

assess these performance factors accurately since the whole application will

not run in a realistic environment. 

Running application software on TLM platforms is a good occasion to

conduct a brief benchmarking for the internal behavior of a platform or an

IP, i.e. behavior due to the fine-grain impact from certain hardware features

on the platform. Transactional analyses in this realistic benchmarking serve 

as accurate sources for significant decision-making in SoC development. To

perform such accurate simulations, timed TLM platforms are compulsory. 

5.2.3 Impressive Demonstration   

Running high-level software is not only useful for hardware and software

developers, but it is also valuable for other professionals involved in the SoC

project. A lively demonstration of a given application can be surprisingly 

rewarding for marketing crew as well as final users.

An impressive demonstration of the whole system is the real foundation

of communication for marketing crew. The demonstration is intended not 

only to prove the platform compliance with the requirements, but also to 

illustrate the impact of pulling all the requirements into the entire system. 

Final users, on the other hand, can start validating if the platform fits their 

design requirements without waiting for the first prototype. If the result is 

negative, there is still ample of time margin to modify the platform before 

the real hardware advances. After all, TLM platforms are simply some 

software pieces that can be easily altered.  

5.3 Approach to Application Software Development 

This section provides some general advices to develop application

software revolving around TLM methodology. 

5.3.1 Provision of Realistic Environments 

Developing a specific application targeted at an embedded system on a 

real chip is quite a different matter from developing the same application for 

running on a workstation or application server. The reason is that the

embedded system is a real environment with plenty of constraints in terms l

of computing resources, bounded memory size and less powerful CPU. On 
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the other hand, the workstation or application server protects the software 

developers from this realistic environment with their own software 

environment. Such unreal environment may tolerate certain programmingl

pitfalls that could become threatening on the real embedded system.

Therefore, application developers must be aware of this potential 

discrepancy and design their software tailored for the optimal use of the

computing resources.  

A significant part of the application software can be developed natively 

on workstations or servers without TLM platforms. Although well fitted on 

this untargeted foreign environment, the resulted software often triggers a 

disaster on the target platform. Several reasons can explain this situation. In 

general, the larger the SoC project, the more difficult the anticipations will

be. Collected below are among the most common examples: 

1. non-executable application due to the excessive memory consumption 

by the application itself on the target system; 

2. system crash due to some leakage in the resource consumption;

3. inefficient codes due to a slower processor; 

4. deadlocks of multi-threaded applications due to different scheduling. 

Looking at all these potential problems, it is absolutely critical to get 

ready a realistic environment for embedded applications as soon as possible.

Through a realistic environment, such problems can be detected in the early 

phases of the application software design ranging from development to 

execution and simulation. TLM platforms offer a 3-in-1 solution that covers

the three environments for bringing realistic effects, i.e. development, 

execution, and simulation environments.  

The development environment is the set of applications and librariest

necessary for building and debugging a given embedded software. Its early

use within the application design process enables the early detections of 

compilation problems, missing target library functionalities, and resulted 

image size to be loaded on the target platform. 

  The execution environment is the set of resources involved in the

embedded software execution. This is the heart of what TLM platforms have 

to offer to software developers. Running applications on such platforms give

software developers a realistic idea of any potential execution problems

hidden in their applications.

The simulation environment is the set of external devices connected to

TLM platforms. Its mission is to provide software developers with a realistic 

external simulation that will exercise the whole system hardware and 

software. Essentially, this environment simulates the application in the 

setting that it expects to run in. Such simulation is important for observing

the realistic aspects of the embedded system that depend very much on the

data exchanges with the external world.
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5.3.2  Attention to Application Performance

The amount of software to be run at the application level is huge. It is 

very likely to run on many loosely coupled IPs and split into a central 

application software with multiple firmwares around. Therefore,

performance becomes a core issue for using TLM platforms in order tor

extract quickly interesting results. If the accurate timing is one of the major 

expected results, native compilation is of little help.  

Running multiple loosely coupled software pieces in parallel provides

software developers with the ability to parallelize them easily. Although

platform IPs may seem independent from the angle of software, TLM 

platforms impose a certain level of serialization among them because they

interact altogether at the hardware level. Consequently, a very accurate TLM

platform from the hardware perspective may become much less efficient in

running an application software. It is therefore extremely important to 

choose the accuracy level of each TLM component very carefully for a 

system integration.  

Nevertheless, keep in mind that the host processor is usually much more 

powerful than the simulated hardware (for the majority of the simulated IPs 

except the central processor). The global performance of the TLM platform 

thus correlates with the ISS performance. Such correlation is also true for 

IPs running a firmware on a little embedded micro-controller turning at low 

speed. If the TLM platform embeds an ISS for this micro-controller, then the 

ISS performance will be high thanks to a simple code emulation as well as

the high relative speed between the micro-controller and the host processor.

Watch out: the firmware running on this IP could be an active loop waiting

for an event to be raised by another IP, and that may cause the system

temporarily doing nothing constructive for the platform evolution. Of 

course, this is another matter on a timed TLM platform as the relative 

performance of IPs are already taken into consideration.

To conclude, the challenge of running an entire application on a platform 

may turn out to be much tougher than expected. The challenge has no close

relationship with the hardware, but rather in validating the integration of all

software pieces. It may lead to coherent yet antagonistic directions from the

point of view of application performance.

5.3.3 Control on TLM-Specific Code Amount  

TLM and real platforms provide software developers with different but 

complementary advantages. TLM platforms, however, are not set up to run

huge applications due to a costly price to pay for the high accuracy, i.e. low 

performance. Yet, there is still a real interest to run huge software slowly on
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TLM platforms: obtain a level of internal observability that is almost

impossible to get from a real platform. 

When a TLM platform is stopped, all of the platform components are

stopped at the same time in the same state even though they are not tightly 

coupled. This is a very advantageous situation to examine the component 

states in details. Such convenience is not easily reachable on a real platform 

because everything is fit into a chip, which is only accessible through some

internal complex and indirect tracing mechanisms such as JTAG.

Software developers must refrain from writing too many software

specific to TLM platforms. This can be helpful at the early stages of a 

project in order to make use of native compilation. However, it becomes less

and less useful as the project advances because the platform will normally be 

more and more complete while adding new functionalities. Having such 

code at late phases might be mainly for catching some subtle bugs. It will

not be reused on the final hardware and thus can be considered worthless to 

be developed.

Bear in mind that TLM platforms are pure software. If the real hardware 

is available, it will certainly be more efficient to debug an entire application

on it than on the TLM platform (provided that lower software layers are 

sufficiently debugged beforehand on the TLM platform). Although subtle

bugs can be discovered faster on the real hardware, TLM platforms still 

merit a vital role at this stage to continue testing certain software parts

separately from the whole system view.  

In brief, software developers must wisely determine the software amount 

developed particularly for running high-level software on TLM platforms,

knowing that it is preferable to target final applications on the real platforms

for the reasons of debugging efficiency and code reusability.

5.4 Examples of TLM-Oriented Application Software 

Typical applications running on TLM platforms are those interoperating

different IPs through an embedded processor or micro-controller. Particular 

applications running on a single IP can be interesting for demonstration but 

not really valuable for debugging.  

5.4.1 Multi-Processor Platform Application

A multi-processor SoC platform (MPSoC) is a platform that embeds 

more than a single processor of the same type on which the system workload 

is distributed. Other main parts on MPSoC platforms include communication 

channels and potential managers to handle the multiple processors.  
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MPSoC are extremely complex platforms with more than one CPU to run 

the software that manages the whole platform, which consequently leads to a 

distributed management model. Such hardware implementations could be

too complex to understand for software developers. Rather, they should try 

to comprehend the TLM model of the platform and figure out  how to get it 

run. That will focus software developers on the problems related in running 

an application on these platforms, instead of understanding how the 

platforms work.

Communication is another interesting point to employ TLM models of 

MPSoC platforms. The reason is that the complex software running on 

MPSoC platforms always tries to split its workload on all platform resources 

for an optimal utilization. It is therefore fundamental to have an excellent 

control over the communication and data exchanges in order to master such 

platforms. The unified view and global fine-grain control of each processor 

through TLM platforms allow software developers to retrieve and analyze

the MPSoC platform behavior easily. These analyses can be accomplished 

without overlooking the subtle platform management normally handled by 

software such as cache coherence with DMA and shared memory. 

Typical MPSoC platform applications are generic parallel applications in 

which various tasks such as graphical encoding/decoding, network routing, 

scientific computations can be executed indifferently on any processor. The

goal of using TLM platforms for such applications is not really running the 

computations, but rather validating through small examples that the 

workload is well distributed among all of the processors. It is easier to 

conduct this sort of validation on the slow but accurate TLM platforms than

on the real hardware whose activities are much more difficult to control. 

5.4.2 Centralized Multi-Architecture Platform Application 

A multi-architecture platform denotes a platform that embeds multiple

processors of different types. The overall workload is distributed among allt

of the processors but these processors, unlike MPSoC platforms, do not play

the same role. Software must be split into pieces dedicated to each type of 

processors.

Multi-architecture platforms are usually called for applications dealing 

with the parallel handling of multiple data flows whose management is

centralized on one or multiple processors of the same type. Examples for 

these platforms include telephone, set-top box, and complex audio platforms.
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Since each processor is of different type on multi-architecture platforms, 

heterogeneity and synchronization are unsurprisingly the most difficult parts

to master. Indeed, communications in multi-processor platforms can be 

considered as a particular case of communications in multi-architecture 

platforms. High-level management applications are responsible for optimal 

distribution of the instantaneous workload to the right processor at the right 

timing. TLM platforms provide a real advantage by giving a high-level view

of different software pieces running on different processors. 

 The DSP plays a particular role as a multi-architecture platform. DSPs 

are not general-purpose processors but they can be continuously reloaded 

with a new program to perform a new function required at a given time.

Debugging DSPs is exceptionally complex because the software running on

some of the processors changes constantly. This characteristic could be a 

potential source of bugs that is not easy to detect and fix. To handle the 

communication between a CPU and a DSP, software developers need to 

obtain a coherent view of the software distributed on heterogeneous

processors all the time. 

5.4.3 Pipelined Multi-Architecture Platform Application

The pipelined multi-architecture platform is another kind of multi-

architecture platforms. This is a platform whose IPs are integrated in such a 

way that a data flow will stream from a specific IP to another specific IP 

through the whole platform. 

The role of the CPU on a pipelined multi-architecture platform is similar 

to the one of the centralized one, i.e. it organizes the data flow and manages

the external events. Typical platform examples are multi-media decoders. 

Getting ready the application software as soon as possible for such 

platforms enables the flow design validation and the early revealing of any 

potential bottlenecks that may threaten the overall platform performance.

These platforms usually consist of multiple IPs with micro-controllers that

run a firmware not modifiable until the next platform reset. The overall

software is split into multiple pieces that are loaded into their own target IP 

processors, which are independent from each other except for their 

synchronization.  

TLM platforms can simulate this type of complex platforms for 

validating not only the IP-dependent software individually, but also the

overall application that subsequently allows careful checking of certain 

platform aspects during debugging process.
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6. CONCLUSION

Running software on TLM platforms leads to splitting software in three 

layered categories that correspond to the three principal software-testing 

layers: unit test, integration test, and validation test. For each layer, TLM 

platforms offer software developers the simulated platform that they need for 

executing and debugging their software. The choice of the accuracy level of 

TLM platforms is crucial, as the software will appear to run less efficiently

on a more accurate platform. Figure 4-5 recalls the idea of relating different 

software families and environments in the V-diagram of software testing.  

Figure 4-5. Software Families and Environments vs Software Testing 

Developing a complete system based on TLM platforms can significantly

improve the methodology and the schedule of the hardware and software 

design. Software developers are able to test their codes on simulated but 

accurate hardware platform long before the real hardware prototype is ready.

Even after the real hardware is made available, TLM platforms continue to 

bring software developers important information that is not obtainable from 

the real hardware. Essentially, TLM platforms play the central role in 

hardware/software development as a common exchange platform between

these two development teams.

TLM platforms are also considered as the software bug amplifiers. They

reveal a more general behavior of the hardware, which is normally not easily 

accessible to software developers. This advantage reinforces good software

practices for software families ranging from low-level codes to software 

architecture layering. 

In conclusion, TLM platforms shorten the global time-to-market and 

raise the overall quality of SoC projects. Uncovering software and hardware 
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bugs long before the real platform availability considerably trims down the

cost of bug fixing. Last-minute patches can then be avoided most of the

time, giving software developers more time to work on performance issues. 
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Abstract: Functional verification has traditionally focused on providing tools to generate 

tests and measuring their so-called coverage. The need to provide the correct 

reference data has had however relatively little attention. This chapter 

describes how to apply TLM models as executable functional specifications to

generate the compulsory reference data required by functional verification 

environments. We further explain how these models can be used in 

conjunction with other verification techniques such as hardware emulators, 

and how formal verification techniques can be applied to TLM models.
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1. INTRODUCTION

The functional verification of a SoC design is a phase that guarantees the 

compliance of the design implementation with its specification. It is a 

complex and time-consuming design step, accomplished by converting the

specifications into a combination of: 

1. Stimuli and expected results scenarios, verifying that the design 

produces the expected results when applied with the stimuli.

2. Golden model and stimuli constraints, verifying that, whatever the 

constraint-compliant stimuli, the golden model and RTL behavior are

equivalent.
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3. Properties and stimuli constraints, verifying that, whatever the 

constraint-compliant stimuli, the properties hold true. 

Using TLM for performing these tasks allows sharing TLM verification

scenarios and models between the design groups, hence increasing 

productivity, integrity, and task parallelism. 

Productivity is increased by avoiding the duplication of verification

scenarios and models. Through higher simulation speed by using TLM

models alone or by TLM co-emulation, productivity can be further boosted.

Integrity is improved, for instance, by assuring that the model used by the 

software group is being verified against the RTL model employed by the

hardware and verification engineers.

Task parallelism is provided by the possibility to develop scenarios and 

tests using TLM reference model while the corresponding RTL

implementation is being developed.

This chapter discusses extensively on how to apply TLM to SoC 

verification strategies. To begin with, it explains how TLM influences the

verification flow.  It then describes the important aspects of the verification 

flow in using the TLM methodology. The strategy for a complete TLM

verification flow is also detailed, followed by the illustration of a TLM use 

model within the verification flow. Lastly, the chapter explains how 

properties can be proved directly at the TLM level.

2. A NOVEL APPROACH TO SOC VERIFICATION 

TLM is put forward as a novel approach to the SoC design residing at the

transaction level, which is revolutionary compared to the RTL design at the 

signal level. The focus of this chapter is introducing TLM as a different 

approach to the SoC verification flow.

The classical flow of a SoC design stretches from the RTL design down 

to the post-layout GDS format for tapeout. Throughout the flow, a number of 

stages are performed. Each of these stages allows a refinement from a 

certain level of abstraction into another level of higher precision. Based on

the RTL design, a logic synthesis is carried out to obtain a gate netlist. As

denoted by their names, RTL designs deal with circuits at the register 

transfer level while gate netlists handle circuits at the gate level. The

automated process of logic synthesis can be verified by the method of formal

proof.

The TLM-oriented SoC verification extends the SoC design and 

verification flow to a higher level of abstraction than the classical flow. This 

new methodology, however, has yet to incorporate an automated process to

pass TLM designs to RTL designs. Some studies have been going on in this 
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direction but to no satisfactory solutions so far. To date, the tools developed 

from the research are not as stable and efficient as those for the conventional

logic synthesis. Such TLM-to-RTL refinement remains a manual task in

general. The two models are sometimes prepared by two different engineers,

making the refinement task a more complicated process. 

As natural as using formal proof to verify the conversion of RTL designs

into gate netlists by the logic synthesis, it is undoubtedly essential to verify 

the conversion of TLM into RTL as well. The verification of both TLM and 

RTL models is crucial to guarantee their equivalent behavior. The software

team may otherwise run the risk of simulating a different behavior than what 

the hardware team plans to implement. 

In certain cases, the direction of the TLM-to-RTL conversion is reversed, 

i.e. the RTL design is developed and tested before the TLM design. In that 

case, RTL and TLM swap their roles. The RTL model serves as the

reference model whereas the TLM model becomes the design-under-test 

(DUT). Yet, the equivalence of RTL and TLM behavior remains to be 

proven.

No tools of formal proof are developed for comparing the RTL and TLM

behavior thus far. Instead, a special strategy is adopted as an alternative. 

This is a tool-independent strategy that costs little workforce and can

theoretically be automated.

The TLM verification methodology is not only capable of performing

something necessary and critical in the SoC design cycle, but also of 

improving the SoC design flow. Most of the verification strategies prepare a

golden reference model, which is very often written as a C model. Actually,

only a little extra effort is required to write up a TLM model instead of some 

C functions. This little effort, however, brings large gain in terms of design 

reusability. Indeed, TLM reinforces a reuse-compliant verification 

methodology by reusing a high-level test bench to verify an IP model 

conceived at a lower level of abstraction. On top of it, the RTL verification  

becomes easier through the TLM approach, giving designers more room to

focus their efforts on the generation of test stimuli. The routine of a TLM-

based functional verification is briefly described hereafter.  

The TLM model of a given design-under-test, i.e. DUT, has first to be 

written; followed by the corresponding TLM test bench, i.e. the high-level

test bench. Subsequently, the reference model for the design is developed 

under the TLM test bench. The TLM DUT is simulated by the TLM test 

bench for a given test scenario and the associated input stimuli. The results

of the simulation execution are collected as a set of expected values, which

serves as the reference model. Once the golden reference is obtained, the 

same TLM test bench is reused for verifying the RTL model of the DUT.

The RTL DUT is simulated by the same TLM test bench for the same test 
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scenario and the associated stimuli. The resulted values are then compared to

the values of the golden reference model in order to perform a functional

verification of the DUT. This methodology should be applied along with 

other integration test benches at the top-level in order to test the behavior of 

a given DUT wihtin a system environment, for instance, SoC environment. 

3. APPLYING TLM IN SOC VERIFICATION FLOW 

In the classical SoC design flow, design engineers need to interpret a 

written specification document in order to produce a synthesizable code in

hardware description languages (HDL). Engineers are often held 

accountable for verifying the functional correctness of the written HDL

code. This approach is graphically illustrated in Figure 5-1.

Figure 5-1. Interpretation from Specification to RTL  

With the advent of TLM, the SoC design flow has significantly altered. If 

the TLM is coded independently of the RTL design by the same engineer,

the corresponding flow is depicted in Figure 5-2. This figure shows clearly 

that the equivalence of the TLM and RTL design, i.e. reconciliation, must be

proven. If the TLM design is fully tested as a golden reference model, and 

the reconciliation between TLM and RTL is proven, then the functional 

verification of the RTL design can be claimed proven. Note that engineers

are once again held accountable for verifying the functional correctness of 

the written TLM codes.
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Figure 5-2. TLM-RTL Reconciliation 

A better alternative of applying TLM in the SoC verification flow is the

redundancy approach. This is a method where the RTL and TLM designs are 

conceived by different engineers. As illustrated in Figure 5-3, hardware 

engineers are in charge of the RTL design while system engineers are

responsible for the TLM design. The term “redundancy” refers to the dual

interpretation of the same specification. These interpretations, however, are

deduced by two design teams of distinct approaches. The advantage of such 

difference in the interpretation can nicely catch and fill up the behavioral

discrepancy between the RTL and TLM models.    

Figure 5-3. Redundancy Approach 

Figure 5-4 represents another view of the verification flow, which is

equivalent to the case shown in Figure 5-2. The difference is that the 

conversion from TLM to RTL is automated by a tool such as behavioral 

compiler.
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Figure 5-4. TLM to RTL Automation 

There exist other structural organizations of the SoC verification flow

using the TLM methodology. Be it any organization, the functional

equivalence between the RTL and TLM models must always be respected.

The functional verification of the RTL DUT is only valid with the conditions

that such equivalence is observed and the TLM model is proven as a golden

reference.

Hardware designers have a common fallacy of assuming the TLM-related 

activities as the unnecessary work of little value. This is unquestionably a 

false impression. The TLM methodology has many advantages to offer to its

users (see Chapter 2); among which, reducing the workload of verification

engineers is the advantage most pertaining to the functional verification. 

Since it is indeed the executable specification of a given design, TLM 

can replace the manual process performed by verification engineers to

generate the expected results of test scenarios. The generated result serves as 

the golden reference for the functional verification of the given design. This

really saves the verification engineers a significant amount of time. 

After all, a golden reference is always necessary in the test benches

intended for validating the functional behavior of an RTL design. This

reference model can be a TLM model that requires very little extra effort to 

build up compared to the conventional C or e models, but offers hight

reusability in the software development and the architecture analysis. 

4. PRINCIPLES OF APPLYING TLM IN SOC 

VERIFICATION FLOW 

As seen earlier, introducing TLM can influence the SoC design flow. 

Many use models of the TLM verification exist. This section describes the 

principles of applying TLM in SoC verification flow. Three orthogonal axes

are identified to decompose the constellation of the TLM use models in SoC 

verification.

The first axis expresses the difference of the availability between TLM

and RTL models. Although the TLM model can play the role of the golden 

model in most of the use models, the RTL model will sometimes be the one.

The second axis focuses on what should be compared between the two

Specification Interpretation
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models to ensure their “reconciliation”. Here, the DUT can be considered as

a black-box or a white-box. The third axis is related to how the comparison 

is done between the two models; it can be performed during the simulation

or at the end of the simulation.

4.1 First Axis: Which Model is the Golden Model? 

Most of the time, the TLM model plays the role of the golden model. 

This is the case when the TLM model is developed at the very beginning of 

the design flow. It is indeed the best case because it allows developing and 

debugging the software at the beginning of the flow. In addition, the TLM

development is much faster and the debugging is much easier. 

In certain cases, the RTL model is ready before the TLM development.

As an example, this situation is encountered when dealing with the backward 

compatibility. The RTL model has been developed, tested, and perhaps, has 

already been fabricated on an existing chip. The development of the TLM 

model under this situation is normally decided for the future development of 

the same IP but with additional features. 

4.2 Second Axis: States or Transactions Checking? 

The focus here is on what should be compared between TLM and RTL 

models. Indeed, this is very close to decide if the DUT should be considered 

as either a white-box or a black-box.  

The black-box use models do not explicitly make use of the information

held by the internal structure. Black-box tests usually focus on testing 

functional requirements. On the other hand, the white-box use models allow 

peeking inside the “box”. They concentrate particularly on using the internal 

information of the IP to guide the selection of the test data.

It is absolutely coherent to require an exact matching of the traffic

occurring on the bus interfaces of both models, which implies at least a

black-box approach. The transactions occurring during the simulation must 

match exactly between the two models. It is therefore important to choose

the right level of abstraction for the transactions. 

Regarding the internal structure of the TLM with respect to the RTL, the

requirement is open. A good practice is getting a TLM model with the same 

register structure as the RTL model. In such cases, it is possible to take it 

into account for a white-box approach as it splits the complexity of the

model and facilitates the debugging.
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4.3 Third Axis: Methods of Comparison 

The ultimate goal of the TLM verification methodology is to verify that 

the output of both RTL and TLM models are functionally the same. As

discussed earlier, the “golden reference” of a given DUT must be obtained 

by simulating its TLM model in a TLM test bench, followed by simulating

its RTL model in the same TLM test bench for its functional verification. 

The simulated results of the RTL DUT are subsequently compared to the

“golden reference”. There are three methods for comparing the results:

• End-Simulation Comparison.

At the end of both TLM and RTL simulations, the last states of the

memories and registers are dumped into a file for comparison. 

• Simulation-Parallel Comparison.

An approach to conduct the comparison during the simulation process.

Both TLM and RTL simulations are run in parallel. A software will

extract the relevant information from both simulations for comparing

their memory, register content, and simulation events. This approach

provides a much finer verification grain at the expense of slower 

simulation time in a test bench environment that is more complex. Such 

expense, however, is compensated if the test meets a bug and fails. The 

simulation is stopped whenever the test encounters a bug. It means that 

the simulation does not have to keep on until the end of the entire test. As 

a result, the simulation time for verification is actually shorter and the 

debugging becomes easier. The main difficulty for this method is to find 

a good sampling instant of the data. It is not always possible to catch

such sampling instants despite the freedom of choosing the abstraction 

level for transactions. Nevertheless, this approach prevents the

divergence of the data order when integrating the TLM model at the top

level.

• Scenario-Embedded Comparison.

A self-checking test that embeds the comparing mechanism in the test

scenario. The golden reference is included in the scenario so that the 

comparison of simulation results can be launched directly by the scenario 

during the simulation.

4.4 The Use Model in STMicroelectronics 

Section 6 explains the strategy developed in STMicroelectronics for the 

TLM verification. It is a strategy positioned globally in the SoC design flow. 

The TLM model is the first model to be developed in this strategy. It will 
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play the role of the golden model to perform the verification of the RTL

model. The comparison of results is conducted mainly on those transactions 

occurring on the buses. However, the strategy is equipped with the capability 

of accessing the interval structure, similar to the one in “gray-box” approach.

At the end of the simulation, a checking will be performed. 

In Section 7, a TLM use model is illustrated. The golden model is the

RTL and the checking is performed on-the-fly with intrusion in the DUT.

5. ASPECTS OF TLM VERIFICATION FLOW  

5.1 Test Bench 

The test bench environment of the TLM-based functional verification is a 

TLM platform written in a system level language, for instance, SystemC. As

a common practice, the preliminary step is to instantiate the TLM model of a 

given DUT within a TLM platform so as to develop the corresponding

reference model. Once the reference is attained, the RTL DUT will replace

the TLM DUT in the test bench to go through the functional verification. 

The idea of proving the equivalence between RTL and TLM models is 

rather simple: use the same test bench to examine both models and then 

verify whether their output values are the same, as pictured in Figure 5-5.  

Any discrepancy observed in the output implies that the two models

behave differently. If an error is uncovered, it could be a misinterpretation of 

the design specification in one or both of the models. The debugging process 

can be started right after comparing the output values of both models. 

Although chances to find errors in the golden model are less than finding

them in the DUT, an error could come from any of the two models if a

discrepancy is observed. Since the TLM model works at higher level of 

abstraction, they are easier to develop and thus contain less bugs compared 

to the corresponding RTL model. For this reason, it is natural to use the

TLM model as the golden reference model. 

The approach explained above is a module-level test although the test 

bench runs a top-level simulation. The functionality of each module is tested 

without any interactions with other modules. Such test benches are

categorized as the IP test bench. Another category of the test bench is the 

system test bench, which tests the behavior of a given IP integrated into a 
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system as SoC. The remainder of the section further describes both test 

bench categories pertaining to our development work1.

Figure 5-5. TLM Test Bench

5.1.1 IP Test Bench 

The IP test bench is an environment to test a given DUT as an isolated 

component. Figure 5-6 illustrates the basic IP test bench that contains a test 

bench master, a memory, and a channel as described below: 

• Test Bench Master.

A test bench master is the initiator module that executes the test scenario. 

It could either be an ISS of a processor core intended for cross-

compilation or a SystemC TLM module intended for native compilation. 

A particular SystemC component, verif_host, is designated as the test 

bench master for our in-house TLM-based functional verification. 

• Memory.

This is the data manager of an IP test bench. It loads the initial input 

stimuli associated to a test scenario. In addition, it stores the intermediate 

and final output generated during the test execution. A particular 

SystemC component, verif_memory, is designated as the test bench 

memory for our in-house TLM-based functional verification.

• Channel.

A channel serves as the transaction router in an IP test bench. All of the 

components on a given test bench must be interconnected by a channel 

through which transactions are routed about for data exhanges. Our in-

house TLM-based functional verification provides users with two choices

of the channel. First, a simple rounte based on the TAC protocol. Second,

a TAC channel with the log file instrumentation, verif_channel.

1  Discussion is based on our in-house transaction accurate communication (TAC) protocol. 

Other protocols can be developed for TLM verification following the same methodology. 
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Figure 5-6. IP Test Bench 

5.1.2 System Test Bench

A system test bench is an environment that tests the behavior of a given

DUT integrated into a system as SoC. It could simply be an extension of an

IP test bench in which other TLM IP models are added to form a system 

environment. Figure 5-7 illustrates such a test bench. 

Figure 5-7. System Test Bench

5.2 Tool-Independent Aspect 

The TLM verification is a tool-independent strategy, meaning that it is a 

methodology conceived in such a way that it can be applied for a wide range 
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of tools. Although each particular tool has its own specificities, a number of 

common features are vital in order to apply the TLM verification strategy.  

First, the RTL-TLM co-simulation is a recommended feature to have in 

the target tool. Most of the simulators available in the market today are able 

to co-simulate Verilog, VHDL, and SystemC models. It is still possible to 

apply the TLM verification strategy with a tool lacking the co-simulation 

feature. The verification task will nevertheless become more complicated.

Second, the target tool should offer an API for probing and controlling

the RTL signals at any hierarchical level as well as for accessing to the TLM 

models. The probing and controlling of RTL signals exist in Verilog but not 

VHDL. Nowadays, most of the EDA tools offer a solution for this. Quoted 

below are a few examples: 

1. Cadence has extended the SystemC classes of sc_signal using the l

functions of observe_foreign_signal and l control_foreign_signal.

2. Modelsim has added particular features to “spy on” the monitoring,

driving, forcing, and releasing of RTL signals.

3. Specman has indeed installed this feature since long. It has recently

improved it with the introduction of ports (version 4.3.1) that allows

connecting an e unit to another entity.  

4. OpenVera uses Virtual Port for the connection of such purposes.t

5.3 Characteristic of TLM Model 

5.3.1 Abstraction Level

In the TLM-based verification strategy, TLM and RTL are two models 

required for a given DUT. Being two distinct modeling strategies, TLM and 

RTL models have different levels of abstraction. TLM DUTs are untimed 

transaction-accurate models for developing the reference simulation results 

while RTL DUTs are timing-accurate models for undertaking the functional 

verification. Due to such differences, the input and output of both models are 

consequently of different abstraction levels as well. 

The difference in the abstraction level directly influences the way that 

different models are connected to buses. For RTL models, input and output 

signals are connected to buses. For TLM models, on the other hand, read

and write accesses are connected to buses. It is therefore necessary to

convert the accessing nature from one abstraction level to another.

For this reason, specific bus adaptors called bus functional models

(BFM) are required to convert transactions into signals and vice versa

between TLM test benches and the RTL models (see Section 5.4). Some
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connections such as interrupts stay at the signal level for both TLM and RTL 

models. Others, such as clock and reset, only exist at the RTL level. 

5.3.2 Model Timing 

As discussed in Chapter 2, there are two types of TLM models. First, 

untimed TLM models that describe the architecture of a given design.

Second, timed TLM models that cover details of a given design down to the

timing information at the micro-architectural level.  

Although both models can be applied in the TLM-based verification

strategy, untimed models are much more suited because they only capture

the system specification, independently of implementation details. Indeed, 

the functional verification aims at verifying that the system behavior can

hold regardless of the implementation choices.  

If a timed TLM model is used as the golden reference, the objective will 

be different. It addresses the question: “Is the RTL implementation in 

compliance with the micro-architecture captured in the timed TLM model?”

This book will cover mainly the untimed approach. Comments will be given 

for the timed approach. 

5.4 Conversion of Signal and Transaction  

In the conventional RTL verification, the RTL DUT is simulated in an 

RTL test bench. The DUT and the test bench communicate through a single

sort of communication media: signal. In the TLM functional verification, on

the other hand, the RTL DUT is simulated in a TLM test bench. The RTL 

DUT communicates with other modules on the TLM test bench through 

cycle accurate signals whereas the TLM test bench communicates with other 

modules through non-timed transactions.

Note that RTL and TLM are two distinct models of different abstraction

levels. Their difference is particularly noticeable in their interfaces with the 

external world.

Table 5-1 indicates that TLM models have four types of interface while 

RTL models only have two. Be it a TLM or RTL design, these interfaces are

specific to the bus protocol used in the design. The data flowing through the 

RTL and TLM models are of different formats as well due to such

differences in interface. 
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TLM Interface RTL Interface 

Output signal Output signal 

Master/initiator interface Bus interface : Bundle of Input and Output signals 

Slave/target interface Bus interface : Bundle of Input and Output signals

Therefore, getting the two worlds to talk to each other necessitates some 

adaptations for converting signals into transactions, and vice-versa. This is

feasible through implementing special adaptors, including pin convertors,

signal convertors, bus functional models (BFM), and monitors. Figure 5-8 

illustrates the global view of such adaptations. 

Figure 5-8. Global View of Signal-Transaction Conversion 

5.4.1 Pin Convertor 

The RTL DUT has a set of RTL pins to communicate with the external

world. The cycle accurate signals are sent or received through these RTL

pins. In the TLM verification strategy, the first step of the signal-transaction

conversion is to create an equivalent set of these RTL pins in a format 

compatible with the TLM modeling.  

Since we have chosen SystemC as our modeling vector, these pins are 

naturally to be converted into SystemC pins. A pre-requisite for doing so is

implementing the STBus interface in the RTL DUT to allow applying the

relevant BFM in the TLM verification.

Table 5-1. TLM vs RTL Interfaces 

TLM Interface RTL Interface 

Input signal Input signal 
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A SystemC shell, sc_foreign_module 2, is developed around the RTL 

DUT to convert the RTL pins into the equivalent SystemC ports. Tools are

available to perform this pin conversion automatically from the top module

of the RTL DUT. Some tool examples include scv_shell proposed by our in-l

house TLM verification strategy and ncshell proposed by NC-Sim. l

Throughout the TLM verification, the communication between the RTL 

and SystemC ports are handled by the co-simulation layer of the NC-

SystemC simulation kernel. 

By default, the SystemC ports are converted to the signal type closest to

the corresponding RTL signal type. This matching is normally performed by 

the pin convertor tool in the signal type optimization. Figure 5-9 describes

the idea of pin conversion. 

Figure 5-9. Pin Conversion

5.4.2 Signal Convertor 

Once the RTL pins of a given DUT are converted into TLM ports (i.e.

SystemC ports for our case), the subsequent step is to implement a signal 

convertor required for accommodating the following needs: 

• Signal Type Conversion.

Recall from Figure 5-8 that there is a BFM layer connected to the TLM 

channel of the test bench. The converted TLM ports do not always have 

the same signal types as those of the BFM ports. A proper adaptation of 

the IP-specific signal type by a signal convertor is therefore necessary. 

• BFM Signal Buffering.

2  If NC-Sim is used, the corresponding shell will be ncsc_foreign_module.
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The initiator ports and the target ports have different bus protocol rules. 

Connecting these ports directly to the converted TLM ports give the same

signal waveform for both intiator and target cases, which violates 

seriously the dissymmetrical protocol of STBus. To avoid this problem,

bus request and bus grant signals must be buffered by a signal convertor 

to guarantee a flawless signal synchronization.

• Timing Constraints Insertion.

Timing constraints need to be inserted by a signal convertor for adding

random delays in the signal propagation between the BFM and the

converted TLM ports. Such timing constraints stress the IP under test, 

and consequently fill up its internal FIFO. These random delay values are

chosen and entered by the users in an xml configuration file.l

• Cycle Delay Insertion.

This is a constant quarter-periodic cycle delay to prevent the ambiguity in

the delta cycle of the verification. Such ambiguity or vagueness may 

occur if the synchronization signals happen to change at the same time as 

the bus clock signals.   

5.4.3 Bus Functional Model

A protocol is a set of rules imposed between an initiator and a target in a

given system. Initiators and targets drive signals of different purposes. The

typical signals driven by initiators are those with request, address, or data 

information; while the most common signal driven by targets is the

acknowledge signal. Both initiator and target modules must drive their 

signals by respecting the protocol rules.  

The TLM strategy does not intend to drive these signals directly. Instead, 

a bus functional model (BFM) is inserted between RTL and TLM models.

The BFM is indeed the protocol adaptor for a transaction level bus model. It 

converts RTL signals of the RTL DUT into TLM transactions for the TLM

test bench, and vice versa. The following discussion on BFM refers to the

STBus BFM, which has been developed for our in-house TLM verification 

based on the STBus3 protocol. 

The discussion can easily be generalized to other modern bus protocols

such as AXI4 and OCP5 because they share the same fundamental concepts, 

such as asynchronous request and response to enable queuing of transactions

and out-of-order responses.

3 Refer to http://www.stmcu.com/inchtml-pages-STBus_intro.html
4  Refer to http://www.arm.com/products/solutions/AMBAHomePage.html 
5 Refer to http://www.ocpip.org
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The STBus BFM can be implemented either for an initiator port or a 

target port. Three types of STBus protocol, T1, T2, and T3, determine the

implementation choice of an STBus BFM. If the RTL interface is an

initiator, i.e. an initiator port of the RTL DUT needs to be connected to a

TLM target, then an initiator BFM must be implemented to drive signals M

from the RTL initiator to the TLM test bench. On the other hand, if the RTL

interface is a target, i.e. a target port of the RTL DUT needs to be connected 

to the TLM initiator, then a target BFM must be implemented to drive M

transactions from the TLM test bench to the RTL DUT. 

Figure 5-10 clearly illustrates the structure of both initiator and target 

STBus BFM. Note that each BFM is divided into two adaptors, i.e. cell-

packet adaptor and packet-transaction adaptor. To handle the signal-

transaction conversion, the BFM is split in three different levels:

1. Block level. 

2. Packet level. 

3. Cell level. 

Figure 5-10. Bus Functional Model 
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Consider the case of the initiator BFM. The STBus signals from the RTL 

DUT are observed at the cell level. These signals are passed to the cell-

packet adaptor and then converted into the packet level transactions. A bus 

cycle accurate (BCA) element and a bridge are used in the cell-packet 

adaptor. Once converted, the packet level transactions are transported 

through the STBus ports into the packet-transaction adaptor, i.e. the 

STBus2TAC. This second adaptor converts the packet level transactions into 

the block level TLM transactions, which are subsequently connected to the

TLM test bench via the TAC ports.

The same idea is applied to the target BFM by following another sense of 

conversion, starting from the TLM transaction at the block level to the 

STBus signal at the cell level.

In a given design, users normally need a BFM to go from the cell level to 

the block level (C2B), and another to go from the block level to the cell level

(B2C). Since there are three types of STBus protocol (i.e. T1, T2, and T3), 

six different combinations are possible: C2BT1, C2BT2, C2BT3, B2CT1,

B2CT2, and B2CT3. Each of these combinations can be instantiated as a 

single BFM component as depicted in Figure 5-11. 

Figure 5-11. Encapsulated BFM Component 

A clock and a reset component are necessary for handling the cycle 

accurate part in the TLM verification. Several clocks are configurable 

dynamically in an RTL design. A bus clock of the same frequency as the 

RTL clock must be implemented in the BFM. A particular TLM reset 

component, verif_reset, is developed to configure the form and the duration 

of the reset signal in the BFM.
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5.4.4 Monitor

Monitors are used in some use models, for instance, for the on-the-fly

comparison of TLM and RTL models in an RTL test bench. 

As explained earlier, a BFM is implemented in the TLM verification to 

set up the communication between: 

1. an RTL initiator interface and a TLM target interface; 

2. an RTL target interface and a TLM initiator interface.

In the TLM test bench, however, no communication occurs directly

between RTL and TLM modules. Since the RTL interfaces are connected to

the test bench through the BFM, the communication occurs indeed within

the TLM test bench. Therefore, an important aspect in the TLM verification

is to monitor the activities taken place in the RTL models. Two major r

activities to be observed and supervised are:

1. transactions sent by an RTL initiator interface must be compared to 

those sent by the corresponding TLM initiator interface; 

2. transactions transmitted to an RTL target interface must also be sent

to the corresponding TLM target interface. 

To carry out such checking, no signals need to be driven. Instead, signals 

are probed in RTL models to detect any transaction sent by an initiator d

interface to the TLM test bench as well as any transaction received by a 

target interface from the TLM test bench.  

No BFM but a monitor is required to perform such checking task. Ther

monitor is place between the RTL and TLM designs. Similar to the idea of 

BFM, there are initiators and target monitors depending on the nature of the

connected RTL interfaces. Figure 5-12 demonstrates the difference between 

the monitor and BFM.
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Figure 5-12. Difference between BFM and Monitor 

5.5 Analysis of Simulation Results 

5.5.1 Output Data for Comparison 

Three categories of output can be classified for the TLM model:

1. Initiator Interface Output.

For an initiator interface, the output is the entire transaction, i.e.

address and data information.

2. Target Interface Output.

For a target interface, the output is the transaction status such as 

success, failure, waiting, etc. This is typically a return data value for a

read access, for instance, a successful read access will have the 

transaction status of “success” as the output. 

3. Signal Output.

TLM models can also have signals as output. 

5.5.2 Implementation of Checker

In the TLM verification, the output data sampled in the RTL and TLM 

models are compared and verified if they meet the following conditions: 

1. The output values are the same.

2. The outputs are in the same order. 

These conditions must be fulfilled to guarantee an equivalent functional

behavior between the RTL and TLM designs.  

The checker has two FIFOs: one dedicated for collecting RTL values and 

another for collecting TLM values. The matching values are stored in the
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appropriate FIFO when they are available. As soon as a transaction is 

completed on both the RTL and TLM sides, stored values are retrieved from 

the FIFOs for comparison. The length of the checker FIFOs depends largely 

on the design. 

5.5.3 Visualization of Results

To help users better interpret the result of a given functional verification,

the TLM verification methodology should allow the integration of useful

tools to visualize the simulation results. 

Regarding this aspect, our in-house TLM verification is designed to 

support the Cadence NC-Sim logic simulator in order to provide users with a

graphical interface for signal observation and control. A handy monitoring 

mechanism is made available by integrating another in-house tool, SysProbe.

Furthermore, a score board mechanism is employed for relating bus

requests to bus responses through SysProble. It also offers the custom 

analysis such as tracing the divergent point between RTL and TLM 

simulations.  

Chapter 6 gives further discussions on the performance analysis and 

verification, including the SysProbe tool.

6. STRATEGY OF TLM VERIFICATION 

The functional verification based upon the TLM methodology employs a

strategy consisting of four phases: 

1. development of test scenarios and the associated input stimuli; 

2. execution of test scenarios on the SystemC DUT in a TLM test bench

to acquire a golden reference;

3. execution of test scenarios on the RTL DUT in the same TLM test 

bench to conduct the functional verification of the DUT; 

4. analyses of test results by comparing output data and expected values.

A verification test is composed of a test scenario and its associated input 

stimuli. Two test categories can be distinguished according to the test nature:

• Architecture Test. 

It tests the specific behavior of a given DUT regardless of its timing 

implementation. The behavioral aspects covered are principally the DUT

configuration and control, meaning that some tests are initialized and 

executed by the architecture test scenario on the DUT. 
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This is a test created by incorporating the timing behavior of a given

DUT into its architecture test. Such timing behavior is implemented at 

the cycle level to observe the timing impact on the DUT.

6.1 Test Scenario 

This section discusses test scenarios along with some implementation 

details relevant to our own development work. 

6.1.1 What is a scenario?

In a more common term, scenario means test code. Test scenarios applied 

in the TLM verification strategy could be test programs written in C or C++. 

Indeed, the test scenario plays a very important role in the verification flow

because the quality of a verification test depends largely on the scenario. 

A scenario initializes, configures, programs a given DUT and ensures the

execution of a particular control sequence. The same scenario could be

employed for an architecture or micro-architecture test.  

To ensure a good test coverage, the test code of a scenario comprises two

kinds of test: directive test and random test (or a mixture of both). A

directive test is fixed by test developers whereas a random test is arbitrarily 

generated. TLM is able to link the SystemVerilog6, e and SCV7 random 

generators in order to allow test developers writing a script in e language 

that generates the random test of a scenario.

6.1.2 How does a scenario work? 

Since a scenario is applied in a TLM test bench, the information about 

the address mapping must be provided. We handle this by providing the 

necessary information in two address mapping files that are included by the

test code of a given scenario:

• mapping.h

Holds the overall system address mapping information of the test bench. 

• IP_mapping.h

Provides address mapping information specifically related to an IP under 

test, i.e. DUT. 

6 Refer to http://www.systemverilog.org/ 
7 Refer to http://www.testbuilder.net/ 

• Micro-architecture Test.



Functional Verification 175

The test scenario utilizes a particular DUT API, bus driver, to write into 

or read from a DUT. Two principal functions are implemented through the 

bus driver API: r

• DUT_write ()

This function enables the test scenario to write into a DUT by calling the 

standard master_port.write() in the host ports.

• DUT_read () 

This function enables the test scenario to read from a DUT by calling the 

standard master_port.read() in the host ports.

Note that a set of DUT_write() and DUT_read() primitives could be 

assembled to build higher level IP programming functions. Once a test 

scenario is written, it is compiled in a Dynamic Link Library (DLL) to yield 

a .so file. The resulted .so file is ready to be dynamically linked to the TLM 

test bench for its execution. Figure 5-13 sums up our discussion graphically. 

Figure 5-13. Working Principle of Test Scenario 

6.1.3 Where does a scenario go?

Once compiled, a test scenario is dynamically linked to the simulation

kernel for its execution. It is executed by the host of a TLM test bench, 

which could either be an ISS of a processor core for cross-compilation or a 

SystemC TLM module for native compilation.  

We have developed a particular SystemC TLM component, verif_host, as

the test bench master. Indeed, it is a generic native wrapper called Runner

DLL. This wrapper contains an internal SystemC thread, which calls the

main function of a test scenario in order to execute the test program.
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6.2 Input Data 

Input data is the initial value loaded into the test bench in a functional 

verification. It is indeed a set of input stimuli associated with a given test 

scenario. These input stimuli are dependent on the IP under verification. 

Very often, a given group of input data forms a test set specifically suited 

for testing the functions of an IP. For instance, an MPEG IP usually has a 

specific test set to decode the image. The role of input data becomes crucial 

if it influences the behavior of the DUT. In general, there are two types of 

input data: 

• Bitstream. Data set for performing tasks as text and image processing.

• Firmware. Data set required for enabling the DUT to execute a program. 

The input data of a given test scenario is loaded into the data manager of 

the test bench. The data manager is generally a memory module as we shall

discuss in section 6.4.

6.3 Expected Value 

Once the input data is loaded into the test bench, the associated test 

scenario is executed together with these initial values. A reference model 

must be developed as the first approach to the TLM verification, hence the

execution of the test scenario on the TLM DUT.

The resulted output of this execution is compared to the “initial golden

reference” of the input data. Typically, the initial golden reference is

computed by an algorithm developed earlier by the author of the design 

specification. Such comparison could simply be a manual interpretation of 

the design specification or the validation of a particular test set. If there is no 

difference between the resulted output and the initial golden reference, the

resulted output can then be qualified as the expected value for the given set 

of input data.  

The random generator can generate a large set of input data to enlarge the

test coverage. This feature is critical if the input data could influence the 

behavior of the DUT. The randomly generated input data can help producing 

additional expected values.

The expected values are collected as the “golden reference” of the TLM

functional verification. The TLM DUT can now be replaced by the RTL 

DUT in order to perform the functional verification. It means that the same 

test scenario is executed on the RTL DUT with the same set of input data. 

The resulted output of this second execution is compared to the “golden 

reference”, i.e. the expected values obtained earlier. If any difference is
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detected between them, the trouble-shooting should be conducted for both 

TLM and RTL models through examining the design specification 

Bear in mind that the probability of encountering failures in both TLM 

and RTL simulations with the same error occurrence is relatively low since 

TLM and RTL are very different methodologies.  

6.4 Data Manager 

The data manager is vital to manage the input data and the resulted 

output of a verification test bench. We have developed a generic SystemC

TLM memory module, verif_memory, to handle this task. 

The verif_memory component is indeed an instantiated C array accessible

through a TAC slave port. It loads the initial data and stores the intermediate

as well as final output generated during the test execution. This part is done

within the memory table. The TAC slave port is dedicated to receive 

transactions from the TAC channel in the test bench. 

There are three portable functions in verif_memory for data management 

and checking as listed below:

• Loader. The loader is an IP-dependent function. It selects and loads the

initial data into the memory. The data loaded could be of binary or 

hexadecimal values. The loader function is replaceable without changing 

the memory model. 

• Dumper. A dumper is a non-IP-dependent function. Its actions are 

controlled by the test scenario. The dumper has virtual registers in which 

the start and end addresses of a memory area are written for dumping the 

resulted output of a simulation.  

• Checker. There are two standard checkers. First checker verifies that the

non-initialized memory cell is not accessible. Second checker forbids 

writing twice the same value in the same location so as to ensure an 

optimal IP behavior performance. Both checkers could be enabled or 

disabled dynamically without re-compilation. It is quite easy to develop a 

purpose-specific checker since it is written in SystemC.

6.5 Global Test Environment 

The platform of a test bench is composed of both RTL and TLM models. 

It is recommended to have two separate top modules, i.e. one for RTL and 

another for TLM. Although such mixed design is hierarchical, separating the

top modules avoids altering RTL models intended for the synthesis as well 

as TLM models intended for the software simulation.
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Such approach is allowed by certain EDA tools, for instance, the Logic 

Design Verification (LDV) tool of Cadence as illustrated in Figure 5-14. For 

those tools that do not support the configuration of separating top modules, 

two sub top modules should be prepared for each model as depicted in

Figure 5-15. As an example, the ModelSim of Mentor Graphics only permits 

a single top module in RTL.

Figure 5-14. Separate Top Modules as Test Bench Platform

Figure 5-15. Single Top Module as Test Bench Platform

The global test environment of the TLM verification test platform is

demonstrated in Figure 5-16.
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Figure 5-16. Test Environment of TLM Verification

6.6 Automated Tool 

We have developed tools based on the SPIRIT standard to automatically 

generate a TLM verification test bench with the necessary adaptations for 

the signal-transaction conversion. See Chapter 7 of this book for further 

descriptions on the subject of design automation. 

7. MANAGING LEGACY TEST BENCHES 

The methodology of TLM verification has succeeded its introduction 

phase smoothly. Yet, it may not be obvious for designers to invest time in 

writing up TLM models of their design.  

Many designs are developed from some existing work. Indeed, a “new”

RTL design is quite often an adaptation of the RTL work done previously.

Such situation raises frequently the legacy issue. This issue, however, can be

alleviated by the TLM verification methodology. 

In general, an existing RTL design has already been intensively tested, 

synthesized, and routed. Through the TLM verification methodology, this 

design can be handily reused as the golden reference to develop and test the 

equivalent TLM design. Once accomplished, the TLM design will be a good 

starting point to add new features. Such approach unquestionably helps to 

consolidate the introduction of TLM as a novel verification methodology.
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This section provides the test cases of two real implementation examples

for the TLM verification. The goal of each implementation is to build the 

TLM models of the next generation IPs. The first example is an ADSL 

modem design based upon an RTL test bench in VHDL, whereas the second 

example is a Video Encoder/Decoder design using an RTL test bench in e

language.

7.1 ADSL Modem Test Case 

7.1.1 Test Environment

The need for the Samx ADSL modem test case raised from the software 

developers because a platform was required to test the software design as 

soon as possible in the design flow.

A test environment targeting to detect 80% of the bugs was therefore set

up for the modem. The characteristics of such test environment were: 

1. The modem design was in VHDL.

2. Module and top-level test benches were in VHDL.

3. The simulator was LDV 5.0-s013 from Cadence.

4. The TLM design was written in SystemC 2.0.1.

7.1.2 Test Bench

The test bench of the Samx ADSL modem is described in Figure 5-17.

Figure 5-17. Test Bench of Samx ADSL Modem 
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All of the monitors and checkers in the test bench were developed in 

SystemC. The communications from SystemC modules to RTL modules

were established by the SystemC library extension of Cadence. The

SystemC sc_signal could be connected to RTL signals through the functions l

of “observe_ foreign_signal” and “control_ foreign_signal”. The monitors 

would reflect the values of the RTL interfaces, which were sent to a checker

or to the RTL module depending on the fact if they were output or input of 

the module. 

7.2 Video Encoder and Decoder Test Case 

7.2.1 Test Environment 

The need for the video encoder/decoder test case raised from the 

hardware designers for two reasons:

1. Get ready a TLM platform to develop the next generation design. 

2. Alleviate the use of the e test bench by reusing TLM modules. 

The test case was intended for testing a particular video encoder/decoder, 

pxp_hamac. A Specman verification environment of Verisity was set up to 

test the RTL model of this module. The “Verification Advisor” methodology 

proposed by Verisity employed the concept of golden model. The golden 

model was normally developed in e or C language. The principle was the 

same as TLM verification, i.e. the same input data were applied to both 

golden model and DUT followed by a comparison of their output values. 

The initial golden model for pxp_hamac was developed in C language. 

The TLM models were conceived based on the C functions. These C

functions were encapsulated by a SystemC wrapper containing:

• interfaces to the external world; 

• synchronization processes to synchronize inputs of modules. 

Advantages of replacing C functions by TLM models in developing the

golden model of the test bench included: 

• testing a real model to be integrated in a simulation platform; 

• significant simplification of the e test bench. 

The characteristics of the test environment were: 

1. The design of the video encoder/decoder was in Verilog and VHDL.  

2. The module-level test bench was in e language.

3. The simulator was LDV 5.0-s013 from Cadence.

4. The TLM design was written in SystemC 2.0.1.

5. The version of Specman was 4.3.3. 
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7.2.2 Test Bench

The test bench of the pxp_hamac video encoder/decoder is described in 

Figure 5-18. 

All of the monitors, checkers, and BFMs are developed in e language.

The test stimuli were injected from the e environment. For master port 

accesses, stimuli were generated at the transaction level and sent to the RTL 

module through the BFM. 

Figure 5-18. Test Bench of pxp_hamac Video Encoder/Decoder

7.3 Remarks

The two examples given above illustrate the different implementations

based upon the same methodology. 

The common points for both examples are: 

• Both test bench platforms tested SystemC TLM models and compared 

the results to those of the corresponding RTL models.

• The original test benches used for testing the RTL design were reused for 

the TLM verification. 

• No modifications were necessary in the RTL design. 

Differences do exist between the two examples:

• Stimulus source for the ADSL modem was VHDL while it was e

language for the video encoder/decoder.

• The IP modeling language for the ADSL modem was SystemC while it 

was e language for the video encoder/decoder.
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8. TRANSACTIONAL CO-EMULATION 

8.1 Introduction to Hardware Emulation 

Given the SoC complexity today, the traditional HDL simulation is 

inefficient to perform SoC verification because HDL simulators are not fast 

enough to handle the high numbers of clock cycles involved.

The hardware emulation aims at providing verification engineers with the

prototype of a given SoC under verification. Such prototypes are based upon 

reconfigurable components, for instance, FPGAs or CPUs. The maximum

visibility to the interior of the SoC design must be given by these prototypes.

The ideal emulator is a system that enables designers to observe all signals 

with the nominal system frequency while running their SoCs. Unfortunately,

such perfect emulators do not exist.  

Depending on the emulation use models, the existing emulator solutions 

allow running verification at a frequency ranging from 1kHz to more than 

10MHz (compared to 10Hz afforded by a typical simulator). These solutions 

provide users with some visibility on the design to help debugging. Such

visibility ranges from some few signals up to a full observability (just as the 

visibility provided by simulators). Most of the emulation solutions are

capable of showing latches, memories, and registers, which are the most 

important elements to be observed. 

Several use models are available for emulating a system. Each use model 

is characterized by its own complexity level, frequency range, debugging 

possibilities, and time-to-emulation. Some of the most common emulation 

use models are collected herewith.

• Self-Test Bench Emulation (STB) 

In the STB mode, both synthesizable test bench and DUT are run by the

emulator at a typical frequency of about 1MHz. The bottleneck of this 

mode is obviously the time-to-emulation because much time has to be

invested in writing a synthesizable test bench. Furthermore, users must 

prepare a specific yet hard-to-reuse test bench. 

• In-Circuit Emulation (ICE)

The ICE mode runs a given DUT on an emulator while the emulator is 

linked to a real environment. To verify a video chip, for example, a video 

camera and a monitor can be plugged in to observe if the system

demonstrates the expected behavior. This emulation mode is well 

adapted for developing the chip firmware. However, it generally requires

high emulation frequencies due to the real environment constraints. This 

mode is not quite appropriate for hardware debugging because of two 

reasons:
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a) emulators can hardly cover both high speed and high visibility; 

b) ICE environment does not provide a full synchronization that 

ensures a deterministic behavior at cycle level.  

• Vector Debug (VD)

In the VD emulation mode, a given DUT runs on an emulator with the 

input stimuli and the expected outputs pre-computed for each clock 

cycle. Indeed, this use model is analogous to using the emulator as a 

production tester that provides an internal visibility to the chip. 

• Cycle Accurate Co-Emulation  

The cycle accurate co-emulation runs a given DUT on an emulator while 

running the test bench on a workstation linked to that emulator. Interface 

signals are updated at each clock cycle. The distinctive attributes of this

mode include low time-to-emulation, test bench reuse, and the typical 

frequency value of about several kHz.

• Transactional Co-Emulation 

The transactional co-emulation is quite similar to the cycle accurate co-

emulation. The key difference is the way they handle the synchronization 

between software and hardware environments. Here, interface signals are 

exchanged only when a communication is required but not at each clock

cycle. Next section will focus on discussing this use model.

Figure 5-19 compares the different emulation modes in terms of the clock 

frequency and time-to-emulation. 

Figure 5-19. Common Emulation Use Models 

RTL Simulation Cycle Accurate Co-Emulation

Vector Debug

Transactional Co-Emulation

Self-Test bench / In circuit
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8.2 Transactional Co-Emulation Mechanism 

The transactional co-emulation runs a given DUT on an emulator within 

a software test bench. It is a high-level verification based upon actions

instead of signal assignments. The working mechanism of such emulation is 

described hereafter. 

In the transactional co-emulation, the software test bench generates some

messages that are sent to the hardware. Referring to these messages, the

hardware is able to work for several clock cycles. Likewise, the hardware 

may use several clock cycles to generate a message for the software. 

The structure of the transactional co-emulation is depicted in Figure 5-20.

Note that there are transactors in the dotted areas of the figure, which are 

specific hardware structures designated for receiving or creating messages.

Essentially, transactors provide the same functionality as the BFMs 

discussed earlier. A transactor must contain at least one hardware port to 

send or receive transactions. Each of these hardware ports is linked to a 

software function named proxy.

Collected below are the benefits of using the transactional co-emulation:

1. Due to the transactional aspect, emulators can run close to the full 

speed such as in STB mode in the best case.

2. Due to the co-emulation aspect, fast and reusable C/C++ test benches

can be easily developed. 

3. Easy integration in a TLM/SystemC environment. 

4. Verification can also be performed at the system level.

Figure 5-20. Mechanical Structure of Transactional Co-Emulation 
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Typical applications of transactional co-emulation are verifications of: 

• stream data such as audio, video, and telecommunication data; 

• memory access modeling;

• bus protocol modeling together with IP verification.

The major pitfall of the transactional co-emulation is the compulsory

transactors that are not always easy to develop. A good investment to resolve 

this pitfall is to develop generic transactors. The libraries of the generic 

transactors may take quite long to build up but the tools based on the 

libraries then allow quick implementations.

8.3 Standard Co-Emulation Modeling Interface 

The standard co-emulation modeling interface8 (SCE-MI) is a message-

passing environment that connects a hardware model to a software model. 

The SCE-MI standard is still under continuous development but the first 

release was successfully delivered in May 2003. 

The objective of SCE-MI is to provide a free standard communication 

interface suitable for high performance transactional co-emulations. Through 

this standard, any transactors are able to run correctly with all the existing 

emulation solutions. Therefore, users will not waste their time any longer in

developing specific transactors based on a proprietary emulator API 

targeting just a single emulator.  

To increase its efficiency, the SCE-MI has defined two types of clocks: 

• Uncontrolled clock - uclock 

• Controlled clock - cclock 

Note that the uclock is an uncontrolled clock, implying that this clock 

never stops. Transactors or BFMs work upon the rising edges of the uclock.

The cclock is implemented in DUTs. In contrast to the uclock, the cclock is

controllable by transactors. This interesting feature empowers the SCE-MI to 

send messages from test benches, which will be processed for several clock 

cycles by transactors. During a message processing, transactors can stop a 

DUT. Once the message is processed, transactors can feed the DUT with

several clock cycles without stopping it anymore. This mechanism allows

the use of dedicated algorithms for message coding, which in turn provide 

better speed efficiency.

Regarding the functionality, the SCE-MI provides four hardware macros: 

1. in port macro, allowing DUTs to receive messages from the test bench;

2. out port macro, allowing DUTs to send  messages to the test bench;

3. clock macro, generating DUTs clocks;

8  Refer to the web site of SCE-MI for further information: http://www.eda.org/itc. 

4. clock control macro, controlling DUTs clocks.
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In addition, the SCE-MI provides C++ functions (i.e. proxy) that can be

linked to the in or out port of each hardware module. Figure 5-21 describes 

the detailed structure of a transactional co-emulation environment that 

employs the SCE-MI. 

Figure 5-21. Applying SCE-MI in Transactional Co-Emulation

8.4 Applying TLM in Transactional Co-Emulation 

The TLM is a transaction-oriented modeling seamlessly adapted to

generate efficient test benches for the transactional co-emulation of a SoC

design. When the TLM methodology is used in conjunction with the 

transactional co-emulation, designers can shorten the SoC design cycle as 

the same platform is employed ranging from high-level tests to verification. 

SoCs comprise several IPs that communicate through a bus or network-

on-chip (NoC). Through the TLM approach, the behaviors of these IPs are 

modeled and the SoC functionality can be simulated at an early stage.  

In the transactional co-emulation setting, SoC verification tests can be

performed by mixing TLM and synthesizable hardware IPs. Such concept 

allows the test bench and non-ready IPs run in the TLM simulation while the 

synthesizable HDL IPs run in the emulation mode. The same TLM test 

bench is consequently retained all through the SoC design cycle. Not only 

that an early checking of the SoC functionalities can be conducted, such  



188 Chapter 8 5

methodology also enables high reusability of test benches and transactors.

Figure 5-22 illustrates the principle of applying TLM in the transactional co-

emulation.

Figure 5-22. Applying TLM in Transactional Co-Emulation

8.5 Example

The methodology of combining TLM and the transactional co-emulation 

was successfully applied to the LCMPEG design9.

As depicted in Figure 5-23, two different approaches to co-emulation

were conducted for the LCMPEG design: cycle accurate and transactional

co-emulations. The co-emulation environment of either approach was

divided into two parts:

• Software Part. This was the TLM test bench written in SystemC. It 

comprised a host model (e.g. ISS) and a memory module.

• Hardware Part. The LCMPEG IP design was placed in the emulator as 

the hardware part.

9  Low Cost MPEG (LCMPEG) is an IP design fully developed and tested by 

STMicroelectronics France. 
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The LCMPEG design applied the STBus protocol as the communication 

interface. Essentially, this was the very part that drew the difference between 

the cycle accurate and transactional co-emulations.  

Figure 5-23. Cycle Accurate vs Transactional Co-Emulations

In the cycle accurate approach, the STBus BFM was conceived as a 

software element located in the software part. The “software” BFM

functioned as a convertor to transform the TLM transactions from the TLM 

test bench into the corresponding signals to be sent to the LCMPEG IP in the 

emulator, and vice versa. The transaction-signal conversion was carried out 

entirely on the software side. 

The STBus transactor for the transactional co-emulation, on the other 

hand, was designed as a synthesizable hardware element located in the 

hardware part. Indeed, the SCE-MI was employed in this approach as the

“message passer” between the software and the hardware parts. The C++

proxy was implemented in the software test bench as the software entry 

point while the transactor was implemented in the hardware emulator as the 

hardware entry point. The proxy and the transactor communicated through 

the SCE-MI infrastructure. TLM transactions from the TLM test bench were 

transferred from the proxy via the SCE-MI to the transactor. Then, these 

transactions were converted into the corresponding signals by the transactor. 

The term, transactor, comes from the SCE-MI standard definition; but it is 

also called BFM as it performs the equivalent conversion as the BFM in SW. 

Note that the transaction-signal conversion was carried out entirely on the 

hardware part, meaning that the conversion was much faster (because
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implemented inside the emulator) compared to the cycle accurate co-

emulation.

Several tests were conducted to emulate the LCMPEG IP. The design

was first executed through the cycle accurate approach on an emulation tool 

at a maximum system frequency of about 17kHz. The “software” BFM was 

then adapted into the “hardware” STBus transactor. Through this adaptation, 

the transactional co-emulation was performed at the system frequency of 

170kHz for the LCMPEG design. Note that this frequency was increased 

tenfold on the same emulator compared to the system frequency used in the

first approach. The observation made on the cycle accurate co-emulation 

showed that the communication between the TLM test bench and the

LCMPEG hardware DUT only occurred for 10% of the hardware clock 

cycles. Thus, 90% of synchronizations done between software and hardware

sides were not required and they were actually slowing down the verification

platform. Transactional co-emulation reduced this communication cost and 

hence improved the frequency of the verification platform. 

8.6 Conclusion

To conclude, the LCMPEG example has demonstrated very well the 

benefits of using TLM together with the emulation platforms. Without 

emulation, a pure TLM co-simulation platform could only run at about 

500Hz on the most powerful Sun workstation. A speed gain of about 30 can 

be achieved simply by replacing a simulator with an emulator. Furthermore,

using the transactional co-emulation methodology gives a platform that is 

300 times faster than the pure simulation platform.  

Since TLM allows reusability, the time-to-emulation is getting shorter 

and shorter. Through such methodologies, designers can obtain a fast and 

efficient SoC verification platform in very short time-lag.

9. FORMAL VERIFICATION 

9.1 Introduction

The previous sections presented the TLM approach to verification 

through simulation. The methodology is nowadays applicable on large

designs. The most common limitation of dynamic verification is that it 

cannot be exhaustive except for very particular situations. 
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Formal verification, on the other hand, can be exhaustive. Ideally, formal 

verification could prove the correctness of a model or uncover all the bugs it 

contains. The problem of formal verification, however, is the difficulty to 

scale up. The algorithms applied are usually exponential in the worst case,

which makes the exhaustive and exact verification, although possible in

theory, not always applicable in practice. 

Many techniques have been developed to allow model checking to scale

up. Most of them rely on approximations. To remain in a formal context, we 

have opted for the conservative approximations that add possible behavior 

but not removing any. The consequence of using such approximations is that 

the response from the verification tool is not true property / false property

but true property / do not know.

Formal verification is therefore extremely interesting when applicable in

real practices. It is nevertheless not an absolute substitute for verification by

simulation because the scopes of both approaches are different. 

This section introduces an approach exploiting all the particularities of a 

TLM design written in general SystemC through our tool implementation:

LUSSY.

9.1.1 Related Work 

SystemC designs being circuit designs, we could thus consider using one t

of the verification tools (model-checkers, SAT-solvers, etc) developed for 

hardware verification such as SMV [1]. These tools, tailored for RTL 

designs, exhibit however a clear notion of logical time while we actually

need to deal with heterogeneous designs. Heterogeneity comes from several

areas: determinism and non-determinism, synchronous and asynchronous 

systems, hardware and software components. Moreover, these tools cannot 

accept general SystemC as inputs.  

As far as we know, all of the work done to date on verification 

techniques and tools for SystemC designs are limited to the subset of 

SystemC that allows writing RTL designs. Such techniques or tools cannot 

be used for real TLM designs (refer to [2] for an example). Similar attempt 

made to treat SpecC language is extensively described in [3]. An execution 

date is associated with each instruction of the program. These dates can then 

be considered as a dependency graph, on which synchronization properties

can be proved. The approach is very limited because only a single date can

be associated to an instruction. Such limitation does not allow general loops 

to be taken into considerations.

Since SystemC is mainly a C++ library, one may expect confronting the

same problems as those addressed by general-purpose software model

checking tools. This is not the case. Verifying SystemC designs is, on the t
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one hand simpler, because general dynamic data structures and general 

algorithms are not dealt with; on the other hand harder, because the

parallelism and the scheduler specification must be taken into account. 

General software model checking techniques concentrate on dynamic

data structures and general algorithms. They provide sophisticated tools such

as invariant extraction and loop unrolling, which are however not directly

usable to exploit the particularities of the SystemC constructs provided as a 

C++ library. Using these tools for SystemC necessitates the inclusion of the 

non-deterministic scheduler specification in the tools. Moreover, such tools

do not usually take parallelism into account. For instance, CBMC [4-5] can

apply bounded model checking techniques on pure C models, but cannot 

deal with parallelism or infinite loops. SLAM [6] uses clever abstractions

and refinement techniques, but only focuses on sequential programs.

The closest related work is found in Java model checking, wherein a 

scheduler specification was taken into account. The Java PathFinder model 

checker, for example, successfully found bugs and proved properties on real

programs. The first version [7] used an approach similar to ours: translating 

Java into the intermediate representation, Promela, and using the model

checker SPIN to prove the properties. The second Version [8] checked the 

byte-code directly using a dedicated Java Virtual Machine (JVM) with 

backtracking capabilities and many other model checking techniques. 

However, the techniques dedicated to Java are not directly applicable either t

to SystemC and its scheduler or to the modeling of synchronous and 

asynchronous mechanisms. 

9.1.2 Approach and Contribution

We advocate an approach to exploit all the particularities of a TLM

design written in general SystemC. The method implemented in our new 

dedicated tool, LUSSY, is comprehensively described in the remainder of 

this chapter.

LUSSY is a tool based on the SystemC front-end Pinapa [9], which can 

extract architecture and synchronization information from a TLM design 

written in SystemC with very few abstractions. LUSSY builds its own 

intermediate representation, HPIOM (Heterogeneous Parallel Input/Output 

Machines), comprising communicating parallel machines that represent 

deterministic and non-deterministic components, synchronous and 

asynchronous communication protocols, Boolean and numerical data. For 

the time being, LUSSY connects this intermediate representation to the 

symbolic model checker LESAR [10] and the abstract-interpretation tool R

NBAC [11]. Both tools provide conservative automatic verification results  
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for safety properties; they may perform their own abstractions on the HPIOM

whenever necessary. The present state of the LUSSY implementation can

already accept a large subset of SystemC. Currently, LUSSY is being applied 

to the case studies provided by STMicroelectronics. 

Translating SystemC into HPIOM is a way of giving a formal semantics 

to SystemC. The faithfulness of the translation relies on the executability of 

HPIOM. The HPIOM obtained may be tested against the official SystemC

execution engine. LUSSY is an open tool, allowing other tools (SAT solvers,

model-checkers, etc) to be experimented on HPIOM obtained from SystemC.

The contributions of this section are threefold:  

1. an executable formal semantics for TLM models written in full SystemC,

with an operational translation tool;

2. a way of expressing safety properties directly in SystemC;  

3. a working connection to verification tools. 

9.2 Verification Approach 

9.2.1 Verifying SystemC Programs

Our approach to verifying SystemC programs is underpinned by two

important considerations listed hereafter. 

• Static and Dynamic Aspects

The architecture is built by executing the elaboration phase of the

SystemC program, which performs dynamic object allocations for all 

components and connections. The set of components is then recognized 

for all the execution time. The architecture being static is a crucial point:

the set of processes is recognized once and for all, and the topology of 

the connections stays unchanged.

• Synchronization Code vs Complex Algorithms

A typical TLM design distinguishes clearly between the potential 

complex algorithms of certain components and the code dedicated for 

synchronization. For instance, a processor could be included in a TLM

design with SystemC codes describing the interpreter of its machine

language while the code intended to run on the processor is provided 

separately.  

Our discussion will focus on the safety functional synchronization

properties of TLM models (safety as opposed to liveness [12] and functional

as opposed to performance). Such focus implies that a processor employed 

in a given design has to be treated in a very abstract way. The program run 

by the processor could be checked by other techniques such as software 
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model checking or theorem proving. Then, the processor component may be 

replaced by very simple SystemC codes, describing its connections to other 

components as well as abstracting all its behavior. The properties that can be

verified on such an abstracted TLM design are restricted from depending on 

the details of the algorithms run by the processor. Indeed, such restriction is 

a good design practice.

9.2.2 Expressing Properties to be Verified in TLM Designs  

Generic properties do not require using a specification language. In 

LUSSY, the followings can be expressed and checked:  

1. Verify that a global deadlock never occurs. We consider that a global 

deadlock occurs when the SystemC scheduler enters the “time elapse” 

phase while no process is waiting for time.

2. Verify that a process never finishes. This should always be the case

except for test benches.

3. Verify that a synchronous signal is never written twice during the 

same delta cycle. This is a dangerous situation since the final value of 

the signal will depend on the order of execution.

4. Check concurrent accesses on TLM ports. Since concurrent accesses 

to TAC ports lead to undefined behavior, they must therefore be 

avoided.

In order to specify and prove user-defined properties of SystemC designs,

specification formalism is required. The idea of LUSSY is that users should 

not have to learn a temporal logic language. The property should be written

in the same language as the implementation.  

The mutual exclusiveness of certain code portions may be verified. This

is slightly intrusive in the source code because the beginning and end parts 

of the critical sections have to be specified.

Finally, the most general safety properties are expressed by assertions in 

the source code through ASSERT(condition). Technically, the macro is

defined by #define ASSERT(X) if(!(X)){is_this_reachable();}. This

reduces the assertion verification problem to the one of code reachability. 

9.2.3 Didactic Example of TLM Design  

To illustrate the transformation from SystemC to HPIOM, a simple 

example is introduced as depicted in Figure 5-24. For clarity, the example 

shows only the body of the processes and the methods called to process 
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transactions in the slave modules. The program contains assertions for the 

properties to be verified. 

Figure 5-24. An Example of the Transactional System

The target port of the module status_slave (respective
signal_slave) is mapped at the address 0 (respective 8). It receives the 

transactions initiated by status_master (respective signal_master). The

call to the method write on an initiator port searches for a slave module 

mapped at the corresponding address, and calls the WriteAccess method on

it. If no module is mapped at the address written on, then nothing happens 

and the status returned verifies status.is_no_response(). If a module is 

mapped at this address, the status returned verifies status.is_ok() unless

the method set_access_error() has been called during the WriteAccess

call.

In this example, the behavior highly depends on the value of variables 

representing addresses. The action triggered by the write will be totally

different depending on the address on which we write. The behavior may

also depend on the data because of the if statement, but there is no complex 

algorithm. 
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9.3 Semantics of SystemC in HPIOM

9.3.1 Principles

LUSSY uses an intermediate formalism called HPIOM. This formalism is 

expressive enough to allow an easy translation from SystemC, and simple

enough as a formal semantics to allow easy conversion to other formalisms. 

HPIOM describes communicating synchronous automata. Each automaton 

has both explicit states and internal variables. At every instant, each 

automaton must perform a transition. A transition can be guarded by a 

condition. It can also trigger actions, i.e. assignments to change the value of 

a variable, or emission of signals that will be received in the next delta cycle.

By default, the translation into HPIOM does not perform more

abstractions than those implied by the expressivity of HPIOM compared to 

that of SystemC (see section 9.3.2). Since most of the interesting properties

are not decided on HPIOM, further abstractions will have to be made.

However, this part is left for specific verification tools connected to HPIOM.

Since SystemC has no formal semantics, a formal proof of the 

equivalence between a SystemC source file and the corresponding HPIOM

representation built by LUSSY is of course impossible.

The main idea is as follows:

1. each process in SystemC will be associated with one automaton in 

HPIOM, built from the information given by the C++ front-end;  

2. the complete HPIOM description of a SystemC design will be made of 

all these “process” automata, plus specific automata for SystemC and 

TLM constructs.

We never parse the SystemC library source code itself but describe

HPIOM patterns based on the SystemC library specifications. There is an 

automaton pattern for the scheduler; on top of it, there is an automaton for 

each signal, event, channel, etc.

9.3.2 Expressivity of HPIOM and Abstractions 

HPIOM may be used to encode any statically bounded-memory program. 

In SystemC, static bounds are guaranteed provided that:  

1. the program does not perform dynamic memory allocation; 

2. there are no recursive function calls.

The semantics of translating SystemC into HPIOM abstracts memory 

allocation primitives and recursive function calls into new input messages

with unknown values. The same is done for those SystemC constructs that  
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are not yet implemented, in order to get a working connection to verification

tools before full SystemC is taken into account by the front-end.

Another abstraction (which is optional) is related to the way addresses 

are dealt with. In our TLM models, addresses are simply int values. If 

nothing special is done in the translation, addresses become ordinary

variables in HPIOM, and any property related to addresses has to be

transmitted to a verification tool able to deal with ints. However, in the 

SystemC source code, it is possible to distinguish addresses from other ints.

For addresses, we propose an encoding based upon the existence of address

maps. Indeed, in SystemC, the relevant values of the address variables are

given by the address maps describing the connection between components. 

Such a map is a partition of N into a finite number of ranges. A Boolean 

variable is associated with each of them. As soon as addresses are

manipulated with this abstraction, we may lose information. This is

conservative for safety properties. It simplifies the proofs a lot, and has 

proved to be sufficient on the examples we tried.  

The last abstraction (which is also optional) is related to asynchrony. 

SystemC is intended to model and simulate asynchronous components.

Although it provides a construct wait(t) where t is an amount of time, 

guidelines specify that this quantitative time t should not be used to enforce 

synchronization. In other words, the designer should not assume that two

processes that perform the same wait(t) would synchronize when t has 

elapsed. The “time-elapse” phase of the scheduler algorithm wakes the

processes up in the order specified by the wait parameters. In our 

translation, they are awakened non-deterministically (encoding non-

determinism with oracles). It means that the HPIOM model exhibits more 

behaviors than what the SystemC interpreter does. This conservative

abstraction enforces the guidelines: if a safety property can be proven on the

HPIOM model, then it is true that the wait statements have not been used to

enforce the synchronization. 

9.3.3 Semantics of Translating Process Code into HPIOM 

Compiling imperative codes into automata is a widely known problem 

and there is no semantic difficulty here. However, the abstract syntax tree for 

a C++ design contains many particular cases. Among these cases, a lot of 

them must be taken into account if we want to apply our tool to the real 

practical SystemC designs. Hence, such translation represents a significant 

part of the implementation work. The control flow of a while loop is given 

in Figure 5-25 as an example.
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Figure 5-25. Control Flow of a While Loop

9.3.4 Semantics of Synchronization Primitives and Scheduler 

Expressing the semantics of the scheduler by some synchronization

between the HPIOM automata could be accomplished in several manners.

The global communication scheme is illustrated in Figure 5-26 and will be 

detailed immediately. The semantics of the SystemC scheduling policy is 

modeled by an automaton for the scheduler. In addition, two automata are

modeled for each process: one represents its control structure (as explained 

earlier) while another represents its state in the scheduler (as depicted in 

Figure 5-27). The process could be in one of the following states: 

1. running;

2. ready to run (i.e. eligible);

3. sleeping (blocked by a wait statement for a SC_THREAD or execution 

over for an SC_METHOD).

The synchronization between the two automata is such that the first 

automaton (representing the control structure) may change its state only if 

the second one is in the state of “running”.

Figure 5-26. Global View of the Communication between Automata in HPIOM
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Figure 5-27. State of a SystemC Process

The SystemC scheduler itself is represented by an additional automaton 

as illustrated in Figure 5-28. It starts in the state of “selecting_process”. At 

that particular starting moment, all of the processes are eligible. The 

SystemC official definition lets the choice among the eligible processes 

unspecified. In our modeling approach, the scheduler chooses a process non-

deterministically; meaning that when we prove a property of a SystemC

design including this non-deterministic scheduler, we prove it for any 

possible implementation. 
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Figure 5-28. The Pattern of SystemC Scheduler 

The low-level synchronization primitive in SystemC is called sc_event.

The operations available for a given sc_event include:

• notify()

The event is triggered immediately.

• notify(SC_ZERO_TIME)

The event is triggered at the end of the delta-cycle. 

• notify(time)

The event is scheduled to be triggered for some date in the future.  

We also build a HPIOM automaton for each sc_event according to the

pattern depicted in Figure 5-29. It has an initial state and a state for each

kind of delayed notification. The immediate notification is modeled by a 

single transition. In any case, the transition going back to the initial state is 

the transition triggering the event. It emits a message that will move

processes waiting for that event from “sleeping” state to “eligible” state. 
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Figure 5-29. Pattern of sc_event 

9.3.5 Direct Semantics of TLM Constructs 

Although TLM constructs, as mentioned earlier, are library components 

whose codes could be translated using the translation schemes above, we

advocate a translation wherein these constructs are given a direct semantics 

in HPIOM. It allows exploiting the information they give on the structure of 

the design. In this section, we sketch the HPIOM encoding of TAC Channel. 

• Wait for the channel to be available.

For each master port, we first create a “waiting” automaton synchronized 

with the master and the TAC. It simulates the master process waiting for the 

TAC to be available as in Figure 5-30. If the TAC is unavailable when a

transaction is initiated by a master, the master should let other processes run.

It will become eligible again when the TAC selects its transaction.

Figure 5-30. Wait for Channel Availability
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Figure 5-31. Pattern of tac_seq 

• Select transaction and resolve the address.

The TAC itself is modeled by the automaton as depicted in Figure 5-31. 

It loops in the initial state until it receives a transaction. When transactions 

are ready to be executed, values identifying them are entered in a FIFO 

(finite FIFOs are encoded into HPIOM). The automaton of the channel

processes these values one by one and goes to the state of “ready”. A 

message is sent to all the automata modeling slaves, and those whose

address maps match the answer. If the channel gets no answer, then it returns

immediately with a status is_no_response. In the previous example 

illustrated by Figure 5-24, the first process elected will send the first 

transaction that will be processed immediately, and the next one will queue 

until the transaction is processed.

• Execute the corresponding method in the slave module.

When the transaction is selected and the slave is identified, the body of 

the corresponding method in the slave module is executed and the status is

returned (i.e. the state of “exec” as shown in Figure 5-31). Note that the

scheme is a somewhat simplified here since the channel has to communicate 

with several instances of slave modules. 

• Simulate a wait to allow other processes to execute.t

If a slave module responds, the automaton of Figure 5-31 will simulate a
wait statement (i.e. the state of “desync”) for a given time duration. 
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9.4 The Tool LUSSY

The tool LUSSY has an internal structure similar to the one of a compiler 

as in Figure 5-32. The front-end extracts information from the system; a 

second pass compiles it into an intermediate representation called HPIOM,

taking the semantics of SystemC into account; and a code generator gives a 

textual representation for it, which can be used as input by other tools. 

The HPIOM representation can easily be converted into several formats

usable by external tools. To date, we have a LUSTRE back-end that permits

the utilization of LESAR and NR BAC. We also have two visualization back-

ends, one for viewing the connections between automata and another for 

viewing the automata themselves, using the dot format of the graphvizt 10

package.

Figure 5-32. LusSy Tool Chain

9.5 Applying LUSSY to the Example

Let us get back to the example of section 9.2.3. In the module 
signal_master, we write a value on the channel at the address 8 after 

writing the value false on a signal. The module signal_slave, mapped at 

this address, will receive the transaction, and check that the value of the 

10  Refer to the web site of graphviz for further information: http://www.graphviz.org.
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signal is false. This may seem trivially true, but it is not. The semantics of 
sc_signal says that the value is actually taken into account only in the next 

delta-cycle. As there is no wait statement between the write and the read

statements, the value read is the previous value. During the first iteration of 

the loop, the value read is the initial value of the signal. In practice, with the

current implementation of the SystemC library, the value is initialized to
false. It is however clear from the SystemC specifications that the initial

value is unspecified. The bug is consequently masked during the simulation,

and NBAC cannot prove the property. The diagnosis of the proof failure

gives the condition on the initial value of the signal (true) that causes the

bug. If we explicitly initialize the signal to false, then the property becomes 

provable; if we explicitly initialize it to true, then the property is false and

the assertion is actually violated during the execution.  

After identifying the bug, we can fix it, for example, by adding a wait

statement:
while (true) { 
   out_bool.write(false); 
   wait(SC_ZERO_TIME); 
   status = master_port.write(address, x);} 

Once the assertion is verified, NBAC is able to prove the correctness of 

the assertions. Now, look at the module status_master. It just writes on the 

channel, and tests the status returned. If a value not equal to 4322 is written

at a mapped address, then the property is true and provable by NBAC (but 

not by LESAR since the property is data-dependent). The first assertion R

becomes false if the address written to is changed, or the address map is

altered, making it write on an unmapped address. If the data 4322 is written, 

the slave will set the error flag; the second assertion becomes false, and the 

proof fails. 

Indeed, this example has the complete verification flow. The proving tool

is able to prove true properties with no manual intervention in less than a 

second. The model contains 28 automata in parallel, with a sum of 104 

states, 196 transitions, 10 numerical variables, and 50 Boolean variables. 

This may seem quite a lot compared to the source size, but the global state-

space is not as large because the system is made of many tightly 

synchronized small automata. Knowing that optimizations must address the

number of variables before anything else, we use symbolic tools for which

the key point is the number of variables but not of global states.  

9.6 Conclusion on Formal Verification 

This section has presented our approaches and tools for the analysis of 

SystemC transactional models. Starting from the source code of a SystemC 
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design, it is parsed using GCC’s C++ front-end and the SystemC library

itself, then transformed into a set of automata, and finally dumped into the

Lustre language. The implementation is operational and the faithfulness of 

the translation was validated on basic examples by comparing the executions 

of the generated Lustre to the executions of the “official” SystemC 

implementation.

The connections to two different model checkers that did not perform the 

same amount of abstractions were also conducted. The main idea of the 

approach is to extract as much information as possible from the SystemC

design, and let the verification tools perform the abstractions required. 

We are currently applying the whole approach to a significant case study 

provided by STMicroelectronics, in order to identify the optimizations of the 

encoding. On HPIOM, we also experiment some traditional compiler 

techniques such as variable analysis. 

LUSSY, being an open tool, can easily move to another model checker by 

rewriting the translation from our automata to its input format. We are

starting experimentations on SMV and SAT solvers. One of the easiest 

attempt is trying out the tool by Prover Technologies. Lustre is indeed the

basis of the SCADE environment provided by Esterel Technologies, which

is equipped with a plug-in by Prover Technologies AB providing SAT 

solving and Presburger arithmetic. Our translation of HPIOM into Lustre can 

be directly used in SCADE. 

As LUSSY provides a formal semantics of SystemC, it can be the basis of 

a toolbox for the development of SoCs at the transactional level. In other 

words, LUSSY can provide tools for all the questions related to TLM design,

ranging from verification and test at the TLM level to the comparison of 

TLM and RTL levels, and analysis of non-functional properties. For 

instance, the formal semantics can be employed as a support for the 

automatic generation of test sequences intended to run on both the TLM and 

RTL models of a given design. This reference semantics is also the

necessary starting point for comparing executions at different levels of 

abstraction.

Since HPIOM preserves the potentially complex algorithms of SystemC

codes, powerful software verification techniques could be used (e.g.

invariant extraction, predicate abstraction, etc.). Besides, we could consider 

extending HPIOM to manage dynamic data-structures, but this would require

efficient support in the proving tools. A more promising approach is the

systematic use of contracts for some of the components. As mentioned 

earlier, a processor is an interpreter of the binary code. It has to deal with a

complex data, i.e. the C codes to be executed! C codes should be abstracted,

i.e. the values exchanged are replaced by unknown values encoded by

inputs. However, such abstraction requires some assumptions of the 
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processor behavior concerning the way it synchronizes with other 

components. This can be described by a contract.
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Chapter 6 

ARCHITECTURE ANALYSIS AND SYSTEM 

DEBUGGING 
A Transactional Debugging Environment 

Antoine Perrin and Gregory Poivre
STMicroelectronics France 

Abstract: Given the complexity of SoC development in the nanotechnology, it has 

become critical to fully validate the system performance at the early stage of 

the SoC design flow. This chapter describes the tools and methods for 

evaluating the overall SoC interconnect performance, for which the

commercial solutions are not yet available. The proposed methodology is

based on SystemC simulation using a generic IP Traffic Generator (IPTG) and 

a powerful monitoring mechanism called SysProbe, which are applicable all 

through the SoC analysis flow ranging from the transactional to register 

transfer level (RTL) simulations. Such Traffic Generators model the system

IPs and the system traffic dependency with a refinement flow, while real

slaves or targets are used to generate the correct latency. The SoC architecture

is modeled either at the transactional or RTL level according to the

requirements of development costs, simulation speed and precision. SysProbe 

provides the results of the architectural analysis to SoC architects. 

Key words: transaction; architecture analysis; architecture platform; transactional

debugging; monitoring; transactional viewer; IP traffic generator; SysProbe; 

traffic characterization; configuration file; initiator; target; interconnect; 

communication model; memory structure model; cycle accurate model. 

1. DEFINING SYSTEM-ON-CHIP ARCHITECTURE 

1.1 Architecture Definition 

Defining a SoC architecture and micro-architecture that will sustain the 

real-time constraints of the targeted application is a great challenge. It is yet 
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again another challenge to verify whether such an architecture or micro-

architecture fulfils the target real-time constraints. 

Assume that every IP of a SoC is sustaining its real-time constraints, the

architecture/micro-architecture definition and verification with respect to the

SoC performance must then focus on the following critical components:

• communication structures1;

• shared memory controllers. 

To help define these communication and memory structures, an 

environment comprises the appropriate tools, models, and the associated 

method must be made available. This environment addresses not only the

SoC architects working on the communication and memory structures, but 

also the verification engineers verifying the compliance of the SoC  

implementation with the application constraints. 

Two main input categories are distinguished for this environment: 

1. IP Traffic Characterisation.

Every SoC IP that influences the architecture definition must be

modeled in terms of the traffic it generates.

2. Application Real-time Constraints.

A given SoC targets a specific application or application domain. The

real-time constraints associated with this application must be made 

accessible so that the estimated or measured SoC performance can be 

compared to the performance results analyzed using the application

constraints.

The greatest challenge to implementing the methodology based on the

above environment is getting SoC architects, who currently use spreadsheets

to define the SoC architecture, to adopt this new approach. The appropriate 

solution must therefore propose a very simple iteration cycle loop without 

obligating the users to learn a new debugging language. The number of 

components should also be reduced to the minimum by eliminating those

components that have no direct impact on the performance analysis and 

system debugging.

The simplification of the SoC platform assembly can be attained by

adopting the SPIRIT automation strategy and the SPIRIT compliant tools 

(see Chapter 7). The SPIRIT automation flow is a compulsory pathway to 

implementing the new methodology described in this chapter, i.e.

transactional architecture analysis and system debugging. This automation 

flow combines SoC components of various abstraction levels with high

1  Including FIFOs (first-in-first-out) used to access to the communication backbone.
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efficiency. The next section gives the list of the components constructing 

this environment.

1.2 Components of Architectural Platform 

The transactional debugging and architecture analysis environment is

composed of the following components: 

• Analysis Tool (AT)

AT monitors a simulated system in order to provide the results that are 

directly related to the target application constraints. 

• Intellectual Property Traffic Generator (IPTG)

The IPTG reads a configuration file describing an IP in terms of its traffic 

in order to re-generate the corresponding traffic on the communication 

backbone. Advantages of using generic traffic generators include

avoiding time delay due to unavailable models, easier maintenance than

C models, and direct accesses to the traffic scenario for validation. 

• Communication Model (COM)

The COM models the communication backbone of a SoC platform. It 

serves during the analysis phase to help define the communication micro-

architecture features such as topology, arbitration, and FIFO size. 

• Instruction Set Simulator (ISS) 

The ISS is used for three cases. First, communication structures and 

memory controllers are often programmed by a processor. During the 

architecture analysis, the ISS is used to perform this programming task.

Second, the ISS is frequently used for the analysis of interrupts. Third, 

the traffic generated by the processor must be taken into account as well.

The ISS can handle this task adequately. While the usage of ISS is 

obligatory for the second purpose, the other two purposes can be served 

just as well by using a generic traffic generator.

• Bus Functional Model (BFM) or Transactor 

The BFM or transactor establishes and assures the correct integration and 

communication between components of different abstraction levels. This 

component allows a progressively refined model to be easily integrated 

into a SoC platform throughout the design cycle, for instance, starting

from TLM IP, to BCA IP, and finally RTL IP.

• Memory Structure Model (MEM)

The MEM models the memory controller and the memory module with

enough details to accurately represent the access latency. 

The components introduced above define the overall architecture of a

SoC platform as depicted in Figure 6-1. These components can be applied in

a modular manner to adapt for the specific context of a SoC design team.
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described hereafter as the starting point for defining specific approaches. 

Figure 6-1. The Architecture of a SoC Platform 

Three phases are undertaken as generic approaches, starting from the

early definition of the main SoC architectural components down to the 

verification of the real chip performance.

1. Early Micro-Architecture Definition.

This definition is based upon IPTG, COM and MEM models. The

RTL model of the memory controller and the behavioral hardware 

description level (HDL) memory model could probably be used if the

abstract models are not available. The analysis environment is

provided by the AT. This phase aims at defining the major micro-

architectural SoC features such as topology, FIFO size, arbitration,

and IP clustering. 

2. RTL Performance Verification.

This verification is based on the IPTG and RTL implementations of 

the components under study. The AT computes the performance

figures and compares them to the same features estimated during the

early micro-architecture definition. The IPTG configuration files 

applied in the first phase are reused here to generate the identical 

traffic. Indeed, this phase verifies if the communication and memory 

models are in compliance with the equivalent RTL implementation. 

3. On-Chip Performance Verification.

The third phase is based on the real chip. During the chip verification, 

an on-chip performance monitor extracts traces from the chip activity. 

generic approach to the SoC performance analysis and verification isA
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These traces are given as input to the AT that will subsequently 

compute the performance figures and compare them with the 

measured performance results on the RTL implementation. Some

discrepancies will be noticed because the traffic is generated by the 

real IPs in this phase while it is generated by IPTG in the RTL model. 

This comparison is very useful to understand how accurate the IPTG

configuration files are with respect to the real IP traffic. The third 

phase verifies the accuracy of the IPTG versus the real IPs in the real

context.

2. TRANSACTIONAL DEBUGGING 

2.1 The Need for Transactional Debugging 

The current SoC generations are based on the multiple initiators/masters

and the multiple targets/slaves. A powerful routing system is required to

interconnect all of these IP blocks, for instance, OCP [1], STBus [2], and 

AMBA3.0 [3]. The efficiency of a routing system in conducting the

performance analysis depends strongly on the functionality and the

programming of the system. 

Today, the routing system has two drawbacks. First, the complexity of 

the routing system continues to grow exponentially. Such growth makes it 

impossible to carry out the conventional manual traffic analysis and 

architecture study on paper. Although this manual analysis continues to be 

helpful in defining the basic system architecture, a simulation tool must be

used to perform a complete traffic analysis and architecture study. Second,

the routing system may result in a system with mixed frequencies and a huge

number of IP instantiations of mixed protocols during the simulation of the

system integration.

If a problem occurs during the SoC integration, engineers will need to

check all components of the SoC platform simultaneously. This could be a 

tedious and lengthy job. Consider that a routing connection includes 20 

signals in average. If the integration problem occurs, engineers might have

to check up to thousands of signals! Each of these signals represents one line 

in a traditional waveform viewer. Bear in mind that a real signification of r

these signals can only be interpreted by combining several signals.  

All the problems described above have raised the need for an efficient 

solution. This chapter describes our methodological approach, transactional 

debugging. The principle of the transactional debugging lies in the 

transformation of such signal combinations into a unified transaction, with 

the intention to collect all the necessary information in the same location.   
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By adopting the transactional debugging methodology, the debugging 

effort is significantly reduced. In the example above, a direct advantage is 

the reduction of 20-line simultaneous cross-check in a waveform viewer per 

signal trouble-shooting. 

Moreover, the transactional debugging helps to avoid the typical lengthy 

and tedious study of the different bus protocols for understanding the bus

communication in a system. Not only are time and efforts saved, but the 

analysis results of the transactional debugging are much more user-

understandable and user-interpretable than those of signal analysis. 

Another interesting advantage of the transactional debugging is that all

types of protocols and abstraction levels could have the same representations 

and attributes. In addition, there is at least a common set of parameters made

available for all kinds of point-to-point connections. The rest of the

parameters and transactional structures are defined by the communication 

structure.

2.2 Definition of Transactional Debugging 

Before getting into further details of the transactional debugging, certain 

conceptual definitions are briefly described in this section.

A transaction is defined as a unified element representing a set of data

being exchanged. It includes a list of parameters with each characterized by 

its name and value. These parameters can be called later as attributes of the

transaction. The transfer of a transaction is denoted by a starting and ending 

date.

A transaction stream is a set of transactions occurring under a particular 

context. For instance, transactions between two routing interconnections are 

grouped as a specific transaction stream. According to the interconnection

properties, transactions can be overlapped. An overlap of transactions occurs 

when a transaction starts its transfer on a stream before other transactions 

previously stored on the same stream end their transfers. To indicate the 

hierarchy between different transactions, logical relations can be defined to

represent their inter-relations; for instance, predecessor-successor or parent-

child relations. 

The transactional information is fully compatible with the corresponding 

signal information. Both of them can thus exist in the same environment. 
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2.3 Transactional Debugging Environment 

The transactional debugging is essential for the current SoC generations.

It raises the observation level from signals to transactions, and thus reduces

the complexity of the interconnection or communication representation. 

To apply the transactional debugging environment in the SoC analysis, 

some fundamental building blocks are required. First, monitors for all 

interconnections of different abstraction levels must be made available. 

Second, an environment supporting the transactional debugging needs to be 

set up. Therefore, the AT must be equipped with a set of monitors and an 

analysis environment for transactional debugging. Such AT environment is

called SysProbe, standing for System Probe. 

The AT monitor is a Finite State Machine (FSM) that recognizes the

protocol of the communication structure in a SoC platform for extracting

information such as addresses and data transferred. The AT analysis 

environment should support the recording, visualization, and analysis of 

transactions. It should nevertheless be able to mange traditional signals too. 

2.4 Monitoring Principles 

In the transactional debugging, monitors are made available on a given

SoC platform for:

• different abstraction levels of the same communication structure;

• different communication structures. 

Such monitors are built in different manner according to the associated 

abstraction levels. Natively available in TLM, the monitor is only surveying

the actual TLM interface or communication function. Quite opposed to the 

idea of cycle accurate monitoring as depicted in Figure 6-2, the transactional

monitor is composed of the following components: 

1. Data Acquisition Components

Either group of modules listed below is in charge of data collecting:

a) Simulator Link Layer. Its role is to assure the connection between

the monitor and the simulator for a dynamic transaction recording. 

The key advantage of such layer is to obtain transactions during

the simulation runtime session. The only disadvantage is that the 

monitor must be manually instantiated before launching the 

simulation. Through the SPIRIT design automation, this part will 

be fully automated and transparent for end users.  

b) Value Change Dump (VCD) File Parse. This module is another 

option for data acquisition that is used in the post-processing 
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mode. This method is not interactive because the results can only 

be studied at the end of the simulation. 

2. Finite State Machine

This module is responsible for extracting the signal information

collected by data acquisition components, and processing them into

the transactional information according to the associated bus protocol

before sending them to output modules. 

3. Output Modules

There are several output modules for handling the simulation output:

a) Transaction Dumper. This module obtains the transactional 

information from the finite state machine, prepares them into the 

final database formats, and dumps them into the database.

b) Protocol Checker. This module has two missions. Its first mission

is to assure the transaction integrity by detecting protocol 

violations that may affect the attribute integrity of the information.

To perform its first mission correctly, the protocol checker must 

be able to verify a minimum set of the protocol rules. Thus, the 

module is actually performing its secondary mission to verify

partially the protocol compliance. 

c) Performance Analyzer. The analyzer records the native 

information of the transaction such as latency, frequency, 

occupancy, etc.  

d) Transaction Linker. Based on a specific algorithm, the linker is in

charge of detecting the relationship between all transactions to 

deduce a “system-level link” between all transactions.

e) Traffic Generator. This module creates a configuration file that 

could be reused by IPTG. 

The following are the main performance figures logged for performance

evaluation of a given SoC platform:

1. latency statistics; 

2. pipeline statistics;

3. opcode distribution;

4. occupancy; 

5. throughput; 

6. bandwidth;

7. bandwidth occupation. 
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Figure 6-2. Cycle-Accurate Monitoring Structure

As illustrated in Figure 6-2, the FSM is implemented in C++. Note that 

the recording mechanism is implemented using SystemC Verification2

(SCV) library. This standard improves the inter-operability between ATs by

providing APIs for the transaction-based recording. Monitors used in the 

transaction recording allow targeting all database formats (whose recorders

implement the SCV transaction dumping API with the same code through

the unified API provided by SCV). To manage a new SCV compliant 

database format, the only action to perform is to link the new recording 

library with the existing probe. Thus, designers can use their own analysis

environment such as text based, Cadence Incisive [4], or Novas Verdi [5]. 

2.5 Analysis Environment 

The transactional debugging analysis environment consists of two parts:

• waveform viewer;

• user plug-in with query-in  anry  add-on debugging features. nd

2  SCV is the extension of SystemC for verification.

Further details on both parts are provided in the following sub-section. 



216 Chapter 6 6

2.5.1 Transactional Viewer 

The real-time debugging is fully linked with the high capabilities from 

the AT to display transactions along with traditional signals. For this reason, 

all the traditional operations applicable to the signal display should also be

applicable to the transactional display. Typical examples of such include

comparison, search, splitting transaction attributes (analogous to splitting 

signals in a bus explosion), and expanding all transaction events occurring at 

a particular time instant. 

On top of these basic display functionalities, a transactional viewer must

take into account various aspects of transactional structure. It means that the

viewer should provide the capabilities of displaying transaction overlaps and 

transaction attributes (with flexible control over which attributes to display). 

Cadence Incisive and Novas Verdi are two powerful tools that support the 

transactional display with high efficiency. Figure 6-3 shows the example of  

SimVision transactional display from Cadence Incisive.

Figure 6-3. SimVision Transactional Display 

2.5.2 Viewer Statistics Plug-in

The transactional monitor is delivered with a set of predefined queries, 

SysProbe Analysis Generator (SPAG). These queries are automatically 

generated for a given design based on a configuration file that depends on

the communication structure, COM. All of the COMs supported by the AT 
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integrate a set of SPAG facilities. The results collected by these queries 

serve as the basic traffic statistics for that design. Three groups of SPAG

queries are available as shown in Table 6-1. 

Table 6-1. SPAG Query 

Query Type Query Function

Generic Query Queries independent of COM.

COM Generic Query COM-dependent queries for full COM analysis. 

Project Query Project-dependent queries.

Based on the viewer statistics, various performance evaluations can be

examined. As an example, typical analyses obtained through the Cadence

Incisive environment are (see Figure 6-4):

1. COM bandwidth; 

2. COM opcode distribution;

3. COM memory map access; 

4. COM memory map bandwidth;

5. COM latency statistics;

6. Initiator COM map access;

7. Link between query database table and wave viewers.
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Figure 6-4. Cadence Incisive Statistics Plug-in Environment 

2.5.3 User-defined Statistics 

In addition to the SPAG query set, users are allowed to define their own 

set of queries. The user-defined query is based on the Cadence Incisive tool, 

Transaction Explorer (TxE) [6]. This tool provides users with an easy way to 

create specific queries by using the “browse button” where options are

proposed at every step of a query creation. 

2.5.4 Embedded Software Plug-in

SysProbe is delivered with a software-profiling plug-in called SysProbe 

Embedded Software (SPES). This plug-in associates the embedded software 

with the program counter (PC) signal of a given design to allow performing 

the hardware-software analysis. Results collected by SPES serve for creating

a correspondence between the software execution and the hardware

transactions recorded on the system. 

Based on the disassembled code, SPES creates a correspondence between

source codes and assembly codes during the debugging process to enable

following the code execution by tracking the PC value. Although these
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principles seem similar to those used in common debuggers, SPES provides 

complementary results that give additional benefits to post-mortem analyses

such as capabilities of moving at arbitrary execution time, going back during 

execution, and software profiling.  

SPES has two key features:

1. Software Execution Display

Note that SPES is not a debugger. As illustrated in Figure 6-5, SPES

provides a post-processing tool that allows hardware designers to 

understand the software execution without adding an ISS. 

2. Early Software-Profiling 

SPES is used for profiling early software execution, particularly in

analyzing the functioning of the interrupt request (IRQ) for a given 

SoC platform.

Typical services offered by SPES include:

1. Correspondence between the time cursor and executed source codes.

2. Correspondence between C and assembly codes. 

3. Display of function calls as signals. 

4. Replacement of bus opcode signals by corresponding function names.

5. Duration and frequency of function calls. 

6. Execution number of a specific code line.

Instead of providing just a simple probe, the capabilities listed above can 

be extended to provide a system view that relates the embedded software to

the whole system. Thus, SPES makes it possible to track the execution of 

software commands in a system. Such ability allows analyzing the software 

performance according to the system architecture, and determining the

arbitration influence on the speed of software execution. 
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Figure 6-5. Embedded Software Plug-in of Cadence Incisive Environment 

2.5.5 Transactional Link Plug-in

Transactions are characterized by particular relationships among them. 

The analysis environment of the transactional debugging must support 

features that describe the inter-transactional relationship.  

The transactional viewer presented in section 2.5.1 supports such feature. 

The transactional linker in the transactional monitor works very well in a 

system where all the monitors can communicate together through the same 

bus protocol.

This feature, however, is not supported in certain cases where several 

heterogeneous systems coexist. A typical example is the simulation with 

mixed abstraction levels. A specific plug-in is therefore developed to handle 

this situation. As depicted in Figure 6-6, this transactional link plug-in

creates the virtual link between transactions using a post-processing engine.

This added feature is particularly useful to follow up the life cycle of 

transactions. By tracking the transactional life cycle, any resultant 

transaction during the simulation will be traced from its creation to its

ending. A currently unavailable feature is a tracking from transactions to the 

resultant signals.
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Figure 6-6. Example of Transactional Flow Link 

2.6 Verification Role of Transactional Monitors 

On top of its role as an analysis tool, the transactional monitor also serves

as a verification tool for TLM IPs. The principle of such verification 

methodology is described hereafter. 

To begin with, RTL signals of an IP under test are extracted and 

converted into transactions from an RTL test bench Based on this

information, the transactional monitor will generate a set of IPTG

configuration files.

Subsequently, a platform comprising an IPTG, COMs, and the TLM 

model of the IP under test is constructed for validation. According to the

IPTG configuration files generated earlier by the transactional monitor, the

IPTG will generate the same traffic as monitored at the RTL level. Through

the comparison facility of the AT, the simulation results of the TLM IP are 

compared to those of the RTL IP for verification purposes.

2.7 Comparison of Abstraction Levels

Communication structures become similar in a certain sense as they 

approach the transactional level. At this point, including a subset of similar 

information in the communication structure will help to detect easily the 

discrepancy between different levels of abstraction. 

A specific tool, TransCompare, is developed based on this concept. This 

tool computes the divergence percentage and lists all the discrepancy points 

of two traces. Such analyses can be purely functional or timed. Indeed, the

engine of TransCompare ignores the timing information. The timing

information is actually treated the same as any other transaction attributes. 
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By allowing the user to select on which attributes a computation is 

performed, TransCompare provides a direct access to both a pure functional

and timed comparison tool. In addition to this key role, TransCompare is

able to align the different naming conventions of transaction attributes from

different database. This feature allows the transaction attributes or 

parameters to be correctly identified for comparison. 

The main advantage of TransCompare is that it considers the transaction

as a data flow by extracting timing information as parameter or attribute of 

the transaction. For this reason, this tool permits computing the functional 

convergence of different transactions even if their timing is completely

irrelevant. An interesting added value of TransCompare is its transaction-

filtering mechanism. Considered as data flows, transactions are easily

filtered according to their attributes. Through this filtering mechanism, 

transactions traced from an IP can be compared to its reference even if it is

in the integration phase. This method is also fully applicable to the

emulation traces using the VCD input features of the monitoring tool.

3. TRAFFIC GENERATOR 

As introduced in section 1.2, the intellectual property traffic generator 

(IPTG) is a critical component in a given SoC architectural platform. The

IPTG is a SystemC block that reads a traffic characterization file (i.e. IPTG 

configuration file) as input, and subsequently re-generates the corresponding 

traffic as output on the platform communication structure. 

3.1 Principles

The IPTG is instantiated in a SoC platform following the same manner of 

instantiating any other components. The ultimate goal of having an IPTG

instantiated for a given IP is to generate the traffic specific for that IP on a

SoC platform.

A typical SoC platform incorporated with the IPTG could include the

components at any of the abstraction levels listed below: 

1. timed transactional level modeling (timed TLM);

2. bus cycle accurate (BCA); 

3. register transfer level (RTL).
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Figure 6-7. SoC Platform with IPTG Instantiation 

The structure of a SoC platform with an IPTG instance is depicted in 

Figure 6-7. Note that the design under test shown in the figure represents an 

IP or a subsystem under test. Once instantiated in a SoC platform, the IPTG 

generates traffic on the ports of the communication model, COM. The COM 

ports are coded at one of the three different abstraction levels mentioned

earlier: timed TLM, BCA or RTL.

As shown in Figure 6-7, the input to the IPTG is a configuration file that 

holds the following information: 

• full statistical traffic; 

• optional refinement;  

• opcode sequence list; 

• IP characterization parameters such as frequency and data size.

According to the information of the configuration file, the IPTG re-

generates the IP traffic as the output. Another interesting feature of the IPTG

is that a simulation report of the traffic generation could be produced by the

IPTG for observation. In addition, a synchronization mechanism is 

implemented in the IPTG to model the dependency between system events.

3.2 Core Implementation 

The building concept of the IPTG is based upon the standard of Open 

SystemC Initiative (OSCI). It is therefore fully compatible with the tools of 

the mainstream EDA providers. Furthermore, the IPTG is equipped with the 

randomization capability founded on SCV, which is an extension of 

SystemC for verification. Since both OSCI and SCV are open sources, the

IPTG is a tangible solution totally free of charge. 

TLM/BCA/RTL API

Architecture Platform
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3.3 Traffic Characterization 

A given IP can be considered as a succession or a series of synchronized 

processes. The IPTG considers any single process or any group of these 

processes as behavior. An IP, therefore, is described by the IPTG as a series

of behavior where each of them represents a particular type of IP traffic.

There are two approaches to define and model the characteristics of the

IP traffic: 

• Traffic Modeling. Define an IP by a set of behavior where each behavior 

represents specific bus traffic as seen from the external world. The IP is 

therefore viewed as a black box by users. The overall bus traffic of the IP 

could be considered as different specific traffic pieces that represent 

different IPTG behavior. The detailed information to configure these

traffic characteristics is specified in an IPTG configuration file. In

addition, there is a rather simple block to ensure a good consistency for 

all the behavior switching and overlapping.

• IP Modeling. Define an IP by a set of behavior where each behavior 

represents a specific internal IP traffic. This internal traffic is managed 

by a bus plug-in interface to subsequently create the bus traffic. The bus 

plug-in interface is represented by a FIFO with a threshold value and an 

opcode list. As illustrated in Figure 6-8, the bus traffic generated by the

IP is split into two parts: (i) IP traffic that fills the FIFO, and (ii) FIFO 

traffic on the bus. 



Architecture Analysis and System Debugging 225

Figure 6-8. IP Modeling of IPTG

3.4 IPTG Configuration File 

The IPTG configuration file is the key role of the IPTG methodology, 

which serves to model the behavior of a given IP in terms of its traffic.

Indeed, the IPTG configuration file is a text file with a set of parameters. 

Each parameter or more precisely, each keyword, is assigned a specific 

value as an argument. These values are the essential pieces of information to 

describe the IP traffic.

To ensure the development effectiveness and simplicity, users only need 

to define a subset of the parameters in the IPTG configuration file. Other 

parameters are kept optional. This flexibility allows not only a quick traffic 

definition but also a later traffic refinement during the project development. 

An IPTG configuration file is divided into two sections: 

1. Header Section.

This section contains general description of an IP. 

2. Behavior Section.

This section provides specific characteristic descriptions of an IP. 

Each section holds a list of keywords that are either compulsory or 

optional. The IPTG configuration file is written up by choosing the proper 

keywords and assigning them with the corresponding argument values. A 

particular grammar must be followed to develop both sections.

 An IPTG configuration file could be manually written by architects or IP

developers. The analysis tool, SysProbe, can also generate such a 
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configuration file for a given IP. It monitors the RTL/TLM simulation of the 

IP and generates the corresponding IPTG file as illustrated by Figure 6-9. 

Figure 6-9. Generation of IPTG Configuration File by SysProbe

3.5 Synchronization  

In order to manage synchronization issues, the IPTG incorporates a

mechanism where the IPTG behavior and the bus interface FIFO are

synchronized to get all the possible traffic combinations. Two approaches

are distinguished for implementing synchronization in IPTG methodology:  

• Configuration file-controlled synchronization; 

• User-defined synchronization. 

Recall that there are two synchronization blocks depicted in Figure 6-8. 

The synchronization block residing within the IPTG is controlled by a

configuration file while the user-defined synchronization block is external to

the IPTG. 

3.5.1 Configuration File-Controlled Synchronization

The IPTG configuration file is extended to include the information of 

timing constraints specific for each behavior of an IPTG. Such information

is characterized by a set of configurable parameters, which will be allocated 

to the current transfer in a system. Controlled by these timing parameters of 

the configuration file, the synchronization of an IPTG based platform can be

adequately respected. Two approaches can be distinguished in handling the

synchronization controlled by the IPTG configuration file: 

• Linked Synchronization. 

• Event-driven Synchronization.
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The linked synchronization is intended for “linking” certain IPTGs 

together according to a set of predefined configuration rules. There are links 

based upon various criteria such as: 

a) Process-based synchronization: A given IP is modeled by a set of 

processes (also called behavior). This mode assures synchronizing the 

different processes within a given IPTG. It is also a synchronization

mode used to release time synchronization between processes coming 

from different IPTG.  

b) FIFO-based synchronization: As illustrated in Figure 6-8, an IPTG 

can include a FIFO. Thus, several basic synchronizations have been 

developed to guarantee the synchronization of such FIFOs between

different IPTGs. This feature is normally used to represent an IP that 

includes several bus ports. Each port is representing by an IPTG. 

Through such mechanism, the IP can be created by grouping all these 

IPTGs together. 

c) Block-based synchronization: a set of traffic generators consuming 

data on a block-based policy; they are synchronized according to the

end of each block.

d) Others: other synchronization policies are available but will not be 

described here. 

Essentially, the linking synchronization coordinates the synchronization

between all the processes within an IPTG parameterized by the IPTG 

configuration file. It also manages the synchronization between different 

linked IPTGs that correspond to the same IP. Note that these are both

implementations for the “internal” synchronization of the IPTG blocks that 

represent the same IP. The configuration file is responsible for coordinating 

the different parts of the IP traffic. It is in charge of starting and stopping

different behavior pieces that correspond to that IP. The main behavioral

attributes parameterized in the configuration file for this purpose include: 

1. random behavior succession; 

2. randomization with increments or basic constraints; 

3. single simulation for each behavior, i.e. no synchronization;

4. FIFO synchronization among different IPTGs. 

On the other hand, the event-driven synchronization implements the 

system synchronization by coordinating the different IPTGs that correspond 

to the different IPs based upon some event-driven conditions. Such 

synchronization mechanism is directly included in the traffic definition of 

the IPTG configuration file. 

Using the linked synchronization helps to obtain groups of IPTGs that 

represent the IPs with several bus interfaces. However, a much more 
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complex synchronization mechanism is needed to represent the real system 

synchronization between these IPs. For this reason, an event-driven

synchronization mechanism is required.  

One of the constraints to implement the event-driven synchronization

was the lack of the ability to change the synchronization mode without 

recompiling the system synchronization policy. To solve this problem, such 

functionalities are directly embedded into the configuration file of the IPTG.  

During the creation of the IPTG configuration file, a synchronization 

keyword (e.g. GEN and WAIT with an event name) can be embedded in 

each process. If the system synchronization is enabled, then the overall

synchronization common to all IPTG will take care about these event during

the runtime.

By bringing together both the linked and event-driven methods, the 

configuration file-controlled synchronization can implement quite complete 

but rather basic system synchronization. This approach involves all the 

IPTGs instantiated in a SoC architecture platform to create an overall traffic

of the system. It works well if all the major synchronization aspects are 

independent of the routing system.

3.5.2 User-defined Synchronization

The user-defined synchronization is an alternative of refining the system

synchronization of the SoC architecture platform. This mechanism is 

implemented in the form of an “external” block where the IP behavior or 

process is programmed using several IPTG-specific C++ APIs. The event 

occurrences related to the synchronization issues are managed by these 

APIs. To do so, users simply need to develop single or multiple control

blocks to control the IP behavior. SystemC is strongly recommended as the 

programming language for this purpose because it offers the built-in 

synchronization blocks.

Although it allows users to fully program the desired synchronization, the 

user-define synchronization necessitates a good command of SystemC from

the SoC architect and hence induces a significant coding cost. Furthermore,

the user-defined SystemC block cannot be overloaded during the simulation 

runtime. A re-compilation is therefore unavoidable to adapt for this change.

Given the time and effort expenses in programming the user-defined 

synchronization block, the untimed TLM SoC platform could be an

interesting alternative. Since the untimed TLM platform is indeed a fully

functional platform with the system synchronization implemented within, it 

can thus be reused as some sort of “timing agent” to help defining and 

describing the IP traffic on the platform. Based on such “functional” 

descriptions, the corresponding IPTG configuration files are prepared by
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splitting the different behavior pieces according to the “functional” 

synchronization. These descriptions are then connected to the matching 

untimed TLM models on the untimed TLM platform in order to build a 

“timed” TLM platform. As the untimed TLM platform implements very 

complete system synchronization, the resultant IPTGs manage to cover the 

most advanced parts of the IPTG synchronization. A rather comprehensive

study of the SoC architecture can be realized through the management of the 

overall synchronization and data dependency by this method.

3.6 IPTG Simulation Report 

The IPTG generates a simulation report at the end of each simulation. If 

there are multiple IPTGs, a single simulation report is generated for all of 

them. Two key roles of the IPTG simulation report are explained hereafter:

• Verification of Expected Traffic 

The resultant traffic from a simulation will be compared to the expected

traffic as described in the IPTG configuration file for verification. If there 

are any violations of the expected traffic, the simulation report will list 

them out as warnings. The warnings will be shown at different levels 

according to the degree of severity. The type of violation will be listed as

well, for instance, non-achieved bandwidth. 

• Tracing Effectiveness of FIFO

The FIFO in an IPTG bus plug-in interface is traced by the simulation 

report to study its effectiveness. First, a Value Change Dump (VCD) file 

is traced. The VCD file contains the information of the FIFO traced 

against time during the simulation. Second, a set of general statistical

information is computed for the FIFO throughout the simulation, for 

instance, the maximum/minimum value of the FIFO. Figure 6-10 shows a 

screen snapshot of the FIFO traffic effectiveness analyzed by the tool of 

Cadence SimVision. Here, users can have a direct understanding of the 

generated traffic with transactions and of the FIFO evolution with analog 

signals.

The ultimate goal of producing an IPTG simulation report is to help the 

platform architects to observe, verify, and eventually optimize the

effectiveness of a system.  
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Figure 6-10. Studying Effectiveness of IPTG FIFO using Cadence SimVision

4. ISS INTEGRATION 

An Instruction Set Simulator (ISS) is often required to complete the 

architecture analysis of a SoC platform. Considering the complexity growth

of the current SoC design, the use of micro-processors has become

compulsory in most of the SoC design. 

By using a timed TLM wrapper and the BFM library, the ISS can be 

integrated into a SoC platform at the relevant level of the architecture study.

The ISS is utilized for three purposes (which will be detailed in this section):

1. COM programming; 

2. interrupt analysis;

3. traffic generation.

Contradictory enough, the pitfall of using the ISS is actually driving the 

complexity of the SoC platform much higher. The dependency on the ISS 

core and the associated tool-chain are additional aspects to deal with.

Sometimes, the ISS could be the bottleneck of the simulation speed unless 

the architecture exploration is conducted at the cycle accurate level. The ISS 

will however become less accurate if the architecture analysis is performed 

at the cycle accurate level.

Considering the irremediable tendency of using the ISS in the current 

SoC architecture analysis, this section will briefly discuss the three main

purposes of integrating the ISS in a SoC platform. 
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4.1 ISS for COM Programming 

Most of the communication models (COM) and memory controllers of a

SoC platform require appropriate programming to assure the optimal system 

performance. The system micro-processor is frequently held accountable for 

this important task. 

The IPTG can be used easily to program all the required registers of the

hardware IPs for this purpose. However, this method cannot guarantee the

same programming of the COM for the architecture validation and for the 

real software delivery. This is the main reason why the ISS is still necessary 

in running the SoC simulation. Therefore, SoC architects have to provide the 

routines to configure the COM and other critical architectural components.  

Another reason to include the ISS in the SoC simulation is the potential 

need for updating the COM arbitration dynamically. The routines of the

COM arbitration may occur upon some interrupts. Unless the whole system

synchronization mechanism is successfully implemented by the IPTG, such

dynamic configuration can only be achieved by applying the ISS. 

4.2 ISS for Interrupt Analysis 

The second typical purpose of using the ISS in a SoC architectural

platform is to validate the correct execution of interrupts based on the real-

time constraints. 

The SoC architectural platform tailored for this purpose focuses on the

ISS and the peripherals that generate interrupts. Other IPs (in the form of 

IPTGs) are included on the platform only for generating the noise on the

interconnect and memory controllers, which assures the execution of the 

interrupt codes according to real traffic constraints. 

The analysis based on the noise generation serves as a preliminary study

of the platform interrupt and traffic. A more advanced study can be carried

out by using the IPTG of all IPs involved in the platform to generate a real 

system-level traffic.

4.3 ISS for Traffic Generation 

To better analyze a system, the SoC architectural platform should 

consider the traffic due to the code fetching and the cache filling. In

addition, the architectural platform should also take into account the 

functionalities executed by the system processor core such as the MP3

treatment in a multimedia platform.  

Preferably, the ISS is used to execute the code to get the real traffic for a 

given application. To simplify the simulation platform, however, the ISS can
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be replaced by an IPTG to simulate the cache refill accesses. Excluding the

ISS will certainly eliminate the dependency on the ISS-specific tool-suite

and debugger. The IPTG replaces the ISS by providing a generic trace that 

includes all of the cache refill accesses.

Before replacing the ISS by the IPTG, a simple platform consisting of the 

ISS and a memory is constructed to run the code. A monitoring tool is used 

to probe the simulation traces to create the according traffic file. This traffic 

file will be re-injected into the substituting IPTG. Then, a new configuration 

file will be created for that IPTG so that the IPTG can replace the ISS in the 

platform for any simulation.  

5. GETTING READY ARCHITECTURE PLATFORM 

This section describes briefly of how to get ready a SoC architecture 

platform, covering the generic SoC architecture platform, communication 

model (COM), memory structure model (MEM), and the accuracy trade-off. 

5.1 Generic SoC Architecture Platform 

Speaking of the SoC performance analysis, the SoC platform itself would 

be the first thing to come across one’s mind. A SoC platform is typically

composed of several model blocks aimed for different purposes, for instance,

the communication model (COM), memory structure model (MEM), IPTGs

and other IP models.  

All of these blocks could be modeled at any of the three different levels 

of abstraction: timed TLM, BCA or RTL. These model blocks could coexist 

in the same SoC platform though they might be modeled at the different 

levels of abstraction. Bridges are used to enable the communication among

these blocks. Figure 6-11 gives a better picture of a SoC platform using the 

IPTG methodology to perform the architecture analysis.
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Figure 6-11. Example of Generic IPTG Platform 

5.2 Communication Model (COM) 

The COM is the structural backbone of the SoC platform intended for 

defining the communication micro-architecture features such as topology,

arbitration, and FIFO size. This communication backbone can be modeled at 

any abstraction levels of timed TLM, BCA, or RTL, to embrace the 

associated communication protocol of the SoC platform. 

Considering the exponential growth of SoC design today, the architecture 

of a typical SoC platform can easily involve around fifty initiators and tens

of targets. The results of such platforms could be undesirable. Hundreds of 

incorrect or non-optimized routing systems may be produced along with 

thousands of signals holding very different programming arbitrations. For 

this reason, the very powerful analysis tool becomes a must in the current 

SoC architecture analysis. 

According to the requirements of simulation accuracy and speed, a timed 

TLM or cycle accurate routing system is used in a given SoC project. The

trade-off between the different abstraction levels for the routing system is on

the account of SoC architects. Of course, the final choice is certainly 

dependent upon the model availability.

A timed TLM simulation aims at the early SoC architecture exploration.

In this analysis phase, a very high number of simulation iteration loop is
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required to increase the coverage of architecture exploration up to the whole 

system. Then, with the known inaccuracy percentage, it helps designers to 

draw an initial routing structure by selecting the best suited COM type and 

platform architecture. 

To carry out the SoC micro-architecture validation or optimization, the

COM parameters need to be programmed accordingly. Thus, using the cycle 

accurate model of the COM becomes compulsory in this phase. To avoid 

wasting time in re-coding the COM into cycle accurate SystemC models, 

various tools such as Tenison Vtoc [7] or Mentor H2C [8] are used to

translate HDL blocks into SystemC codes. 

5.3 Memory Structure Model (MEM) 

The MEM is a collective name designated for all models representing the

memory controllers and memory modules in the SoC platform. It can be 

modeled at any different abstraction levels of timed TLM, BCA, or RTL, by 

respecting the common rule of giving enough details to model the access

latency accurately.

To perform the SoC architecture analysis correctly, the TLM MEM must

be configured from an ASCII file extracted from the memory specification 

or RTL simulation. The reason of configuring the TLM MEM is to model 

the “real” timing of accesses. The delay induced inside the MEM is

computed based on several parameters such as previously-accessed address,

type, current access, etc.    

The memory is often the bottleneck of a SoC due to the memory

contention. For this reason, it is recommended to model the MEM at its 

fullest possible accuracy. This model can be the cycle accurate SystemC

model translated from HDL. It can also be the non-functional but cycle 

accurate blocks, which does not respect the data consistency but the cycle 

accuracy of transfers. This is indeed a cycle accurate memory controller 

without implementing the functionality of memory accesses.

5.4 Accuracy Trade-off 

The proposed methodology can ensure the compatibility of analysis at 

different levels of abstraction. Nevertheless, this method is suggested as a 

complementary solution to the spreadsheet study.  

As illustrated in Figure 6-12, several studies are executed according to 

the accuracy requirement during a project life. However, as an incremental 

method, the analysis is always refined. Starting from a spreadsheet study, the 

HW/SW partitioning as well as the basic COM and MEM choices are 

realized. The spreadsheets required during this initial step are reused to
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program the IPTG configuration file. According to the model available, 

timed TLM or cycle accurate simulations can finally be executed.

Figure 6-12. Accuracy Trade-off 

6. EXAMPLE OF USING IPTG METHODOLOGY 

This section provides a practical example of the SoC architectural

analysis through the IPTG approach. The same methodology is used across 

several families of SoCs. One of this chip is the STB7100, a High Definition

Low Bit-Rate Video Decoder, developed by STMicroelectronics. 

6.1 Functional View of STB7100
3

The STB7100 is the world’s first single-chip Set Top Box (STB) solution 

supporting the High Definition H.264/AVC and VC1 specifications, which 

are poised to enable the next generation of high quality consumer video 

3  The information in this section is extracted from the website of STMicroelectronics at 

http://www.st.com.



236 Chapter 6 6

systems and broadcast services. It also supports the H.264/AVC advanced 

video decoding standard, Microsoft’s VC1 standard and high definition

MPEG-2. The STB7100 can be used in: 

• cable, satellite, terrestrial and IP set-top box; 

• DVD in consumer and automotive.

The STB7100 demultiplexes, decrypts, decodes and outputs HD and SD

video streams with associated multi-channel audio. A dual display

compositor provides mixing of graphics and video with independent 

composition for TV/monitor and VCR outputs. SATA and USB interfaces 

are provided to enable low-cost connectivity to hard-disk drives and low-

cost system expansion. The functionalities of STB7100 are summarized in 

Figure 6-13.  

The STB7100 can simultaneously decode multiple HD streams and 

output the resultant video to two television sets, or display picture-in-picture.

Its CPU core is a high-performance 300MHz ST40, ST’s 32-bit RISC family

based on the SuperH™ architecture and widely used across digital consumer 

applications. It supports all of the current STB operating systems and 

middleware, with power to spare for software enhancements in the future.

The new device is based on an innovative video decoding architecture 

which combines hardware and software techniques to allow systems to be 

upgraded in the field to support new standards as they become available. For 

Digital Video Recorder (DVR) applications it features embedded peripheral 

interfaces - including serial, ATA and USB 2.0 - to allow external devices to

be added easily to an STB or DVD player, either during manufacture or by 

the viewer, in order to provide additional functionality. Viewers increasingly 

use digital video recording for program time shifting. Other peripherals that 

could be connected to a set-top box through the USB interface include 

digital cameras, printers, and memory cards. 
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Figure 6-13. Functionalities of STB7100

6.2 Architecture Analysis of STB7100 

As stated above, a typical Set Top Box or DVD SoC is built using:

• several CPUs: a host and several dedicated cores for audio and video 

processing;

• hardware IPs: such as hardware assists, graphic processors, and 

peripheral interface controllers, each of them behaving as an initiator 

and/or a target on the routing system;

• One or several DDR memory controllers called LMI hereafter.

The conception of the communication model for such a complex SoC

starts with a spreadsheet-based analysis. The different working modes of the

system are listed and characterized. For each scenario, the requirements of 

all the initiators are detailed then summed up in order to choose the memory

buffers locations and to size the memory interfaces. Then, in order to design

and validate in advance the interconnection between on-chip IPs and to 

configure the traffic of the IPs, the whole system is modeled in SystemC at 

transaction level.

This platform consists in several tens of IPTGs describing the behavior of 

the CPUs and the IPs’ initiator side. The communication model is based on 

simple switches and links available both in BCA and RTL. The MEM is 
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made of the LMIs and of basic memories modeling the IPs’ target side. An

example of such platforms is shown in Figure 6-14.

Figure 6-14. Schema of a Communication Model

The IPTGs are modeled at TLM level and the COM and basic memories

at BCA level. The RTL model of the LMIs is used to obtain cycle accurate 

behavior for these key components, which are the bottleneck of the system. 

A TLM-to-BCA translator is then associated to each IPTG, and a BCA-to-

RTL translator to each LMI port.

The CPUs are, in a second step, replaced by their associated ISS. The 

CPUs are configured in traffic modeling mode. The host is in charge of the

communication model and the memory controllers. 

The other IPTGs are set in IP modeling mode. An important feature of 

the IPTG is that it enables to model the dependencies between plugs of the
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same IP, thanks to the synchronization mechanism. Consider an IP that 

works from memory to memory, the pipeline is stopped whenever a write 

plug is full or a read plug is empty. 

The analysis of a simulation performed on such a platform is

straightforward because the IPTG FIFO level is monitored. Any

over/underflow in a real-time IP is flagged and the percentage of pipeline

stopped time in decoder IPs is reported.

For each working mode of the IPs, a set of IPTG configuration files is 

defined to model the worst case in terms of bandwidth consumption. Then, 

scenarios of the spreadsheet analysis are reproduced, gathering the IPTG

configuration files of all the IPS, and a simulation is run for a portion of an

image. 

When the performances are not met, the SysProbe transaction debugger 

allows to observe directly internal nodes of the communication model and to

analyze the root cause of the performance drop off. A side advantage of this 

approach is that the verification of the communication model’s RTL can be

done in the SystemC environment, using meaningful scenarios.

7. CONCLUSION

The methodology proposed in this chapter enables outlining a plug-and-

play architecture environment based on the platform assembly that requires 

no new language learning. 

The IPTG approach is put forward as a complementary solution to the 

conventional architecture analysis on paper, which takes into account the 

inadequacy of simulating a real system’s scenario at an accurate level. By 

adopting this method, IP designers create directly the IP configuration file 

that will be reused across various projects with high flexibility to update 

various products. In brief, the very rewarding result of this methodology is

an analysis environment that is powerful yet easy-to-maintain. 
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DESIGN AUTOMATION 
Integrating TLM in SoC Design Flow 
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Abstract: Although the TLM development and usage only require a C++ development

environment and a SystemC library, design automation is the key to

integrating TLM in the SoC design flow for further reaping the design 

productivity and quality rewards brought by TLM. This chapter explains how

TLM has been integrated in the design flow at STMicroelectronics both by

extending the SPIRIT XML packaging standard to support TLM and by

developing the tools needed to integrate TLM in the flow. 

Key words: SPIRIT; SystemC TLM; SoC; design flow; design automation; XML; data 

model and schema; platform assembly; meta-level; content-level; configurator; 

generator; netlister; IP packaging; platform generation. 

1. INTRODUCTION

The minimum tool and library requirements for the TLM methodology

are simply a C++ development environment and SystemC classes. A 

flawless integration of the TLM methodology into the SoC design flow,

however, entails further tools and libraries implementations. This chapter 

describes at length the necessary accompanying implementations to make

the best use of the TLM methodology in the SoC design cycle.

This goal is attainable through establishing and enforcing a standard 

automation strategy to integrate the TLM methodology into the essential 

phases of the SoC design flow. The TLM assembly should therefore adopt 

an automation approach ranging from the design database to editor, 

configurator, checker, and netlister.  
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From a given design database, TLM components are instantiated,

configured, and interconnected by a platform editor. Configurators and

checkers are subsequently employed to propagate the redundant information

through the design description, and to verify the design integrity. Lastly,

netlisters project the design description into its different targets, covering not 

only TLM but also verification, software, and hardware emulation.  

To support all of the automation tools above, a common format must be t

adopted to store the design information as well as to package the design

components.

The remainder of the chapter provides a detailed description of the

component and design representations, followed by an in-depth explanation 

of the automation tools, and finally an illustration of their applications on a 

real design.

2. DESCRIPTION OF DESIGN AUTOMATION 

2.1 Introduction

With the advent of the explosive nanotechnology era, the design of the

System-on-Chip (SoC) is getting increasingly complex without the help of 

efficient tools. The SPIRIT1 Consortium [1] has developed a standard 

mechanism for describing and handling IPs, with the aim of accelerating

large-scale SoC designs through automated configuration and integration of 

the designs [2]. 

SPIRIT provides an eXtensible Markup Language (XML) schema to

describe components and designs. Rules and regulations are also imposed by

SPIRIT for implementing the user interfaces of automation tools, such as 

generators and configurators, to handle SPIRIT compliant components or 

designs. The SPIRIT design environment is clearly illustrated in Figure 7-1.

For each component or IP in a given SoC design, SPIRIT defines a 

specific XML file containing the metadata that will be used by a SPIRIT

compliant design tool. The content of such component XML file is defined 

in the SPIRIT schema for the following aspects: 

1. Bus interfaces available for a component.

This description allows the automation of connecting a component to

different components of the same interfaces. The bus interface here refers 

1 Structure for Packaging, Integrating and Re-using IP within Tool-flows.
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to a bus definition that specifies the bus Vendor Library Name Version

(VLNV).

Figure 7-1. SPIRIT Design Environment 

2. Different views available for a component.

The descriptions of the different views available for a component are 

essential in determining the abstraction levels for that component within 

a given design. Each view refers to a file set that holds all of the files 

specific to that view. 

3. Memory map and remap information.

Providing the memory map and remap information of a component is 

intended for specifying the different registers available on the slave

interface of that component. 

4. Address space.

The address space of a component must be described because it defines

the logical space accessible by the master interface of the component. 

5. Hierarchy information.

If a component is hierarchical, the information of the different associated 

component instances must be provided along with their interconnections.
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The different parameters available for configuring a component are

described, for example, the size of a RAM, the number of master/slave of 

a bus, etc.

7. File sets of different component views.

A list of the file sets that specifies the various files used by each view of 

a component has to be provided.

A SPIRIT compliant tool uses the content of the SPIRIT metadata to 

automate the SoC design through the followings: 

1. instantiation of components in a given design followed by prompting 

users for the view selection;

2. automatic connection of components depending on their bus interfaces;

3. prompting users for the configuration of parameters; 

4. launching SPIRIT compliant generators.

The top-level structure of a SoC design is specified by its different 

component instances along with their connection at the bus interface level 

via interconnections, or at the point-to-point level via ad hoc connections for 

all the signals not belonging to a bus. The ad hoc connections are of course

present only at the RTL level. 

A SPIRIT generator can be launched from a design tool to accomplish

those tasks that are not managed by the design tool, for instance, netlist 

generation, configuration, compliancy, consistency checking, clock-tree 

generation, etc. 

The coming sections further describe how the design automation is

achieved in line with SPIRIT. The initial version, i.e. SPIRIT V1.0, focuses

only on the RTL hardware view. We shall therefore start our discussion from 

this single-view approach. The next major release, i.e. SPIRIT V2.0, will 

allow the co-existence of the multiple-view such as untimed TLM, timed 

TLM, bus-cycle accurate (BCA), and RTL. Our discussion will highlight the 

ST Microelectronics view on how such multiple-view approach is 

completed. 

2.2 Single-View Component Structure 

The single-view (i.e. RTL) component structure pertaining to the SPIRIT 

V1.0 standard is detailed hereafter. 

2.2.1 Bus Definition 

The specification of a bus is stated by a bus definition. The bus definition 

is identified by its VLNV. Another important piece of information stated

6. Configuration parameters.
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within the bus definition is the maximum number of masters and slaves that

a bus can hold. In addition, the bus definition contains information specific

to the RTL view. This includes the collection of signals that belong to the

bus, and of the constraints to be applied to these signals such as directions on 

master/slave and default values.  

Indeed, the bus definition is strongly analogous to VHDL in the sense 

that the bus definition is a kind of VHDL record type whereby a bundle of 

signals belonging to the same group can be defined.  

2.2.2 Bus Interface 

Different components are interconnected by the bus interfaces defined for 

each component. Each bus interface within a component is designated a 

specific name. Two interfaces can be connected together if:

1. they are of the same type as identified by the VLNV of the bus

definition;

2. they have matching interface natures (e.g. master, slave). 

For this reason, a bus interface must be specified in terms of its type and 

nature as illustrated by the following example. 

Example of Bus Interface Definition

  <spirit:busInterface> 

   <spirit:name>ambaAPB</spirit:name>

   <spirit:busType spirit:vendor=“AMBA” spirit:library=“AMBA” 

spirit:name=“APB”  

             spirit:version=“v1.0”/> 

   <spirit:slave> 

    <spirit:memoryMapRef spirit:memoryMapRef=“ambaAPB”/>

   </spirit:slave> 

   <spirit:signalMap> 

    <spirit:signalName spirit:busSignal=“PSELx”>psel</spirit:signalName>

    <spirit:signalName spirit:busSignal=“PENABLE”>penable</spirit:signalName> 

    <spirit:signalName spirit:busSignal=“PADDR”>paddr</spirit:signalName>

    <spirit:signalName spirit:busSignal=“PWRITE”>pwrite</spirit:signalName> 

    <spirit:signalName spirit:busSignal=“PWDATA”>pwdata</spirit:signalName> 

    <spirit:signalName spirit:busSignal=“PRDATA”>prdata</spirit:signalName> 

   </spirit:signalMap>

  </spirit:busInterface>

At the RTL level, an interface represents a group of signals. The signal

names defined in the bus definition may not always match the signal names

defined in the design. Therefore, a section of signal mapping is included ing

the bus interface for indicating the relationship between these two signals. 

As shown in the example above, the signals defined in the bus definition (i.e.
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logical signal names) are mapped to those defined in the design (i.e. physical

signal names).

Similar to the analogy of the bus definition with VHDL, the definition of 

a bus interface looks like a signal definition whose type would be the one

defined for the bus definition using a record.  

2.2.3 View Specification 

In SPIRIT, the view of a component represents a level of abstraction or 

an implementation of a particular component. The specification of a single-

level view is quite straightforward. First of all, a given view must be 

designated a specific name in order to distinguish it from other views. An 

environment identifier further specifies the environment that can be used by

the given view, for instance, simulation and synthesis environments. The

language applicable in the given view such as VHDL, Verilog or SystemC 

must be stated as well. Lastly, a reference to a file set listing all the files

delivered with that particular view is specified, along with the HDL-specific

model names. Quoted below is an example of the specification for a 

component with the RTL view.         

Example of the RTL View Specification

<spirit:view>

 <spirit:name>RTL</spirit:name>  

 <spirit:envIdentifier>Simulation</spirit:envIdentifier> 

 <spirit:envIdentifier>Synthesis</spirit:envIdentifier>  

 <spirit:language>vhdl</spirit:language> 

 <spirit:modelName>leon2_Uart(struct)</spirit:modelName> 

 <spirit:fileSetRef>vhdlSource</spirit:fileSetRef> 

</spirit:view>

The SPIRIT V1.0 standard assumes that each view contains all of the 

defined bus interfaces, implying that bus interfaces are neither optional nor 

specific to a particular view.

2.3 Multiple-View Component Structure 

The multiple-view (i.e. untimed/timed TLM, BCA, and RTL) component 

structure proposed by ST Microelectronics for the SPIRIT V2.0 standard is

detailed hereafter.

2.3.1 Bus Interface 

To support multiple hardware views, SPIRIT V2.0 will add a new

element in the bus interface schema to specify the name of the available



Design Automation 247

abstraction level for the bus interface. The specification of signals is shifted 

to the abstraction level of RTL. As an example, a given bus interface may

support all of the abstraction levels available for a design while another bus 

interface may only support RTL and TLM abstractions.  

One may claim that such added feature is duplicated information because 

the abstraction level of the bus interface should be the same as the one of the 

component. However, a specific abstraction level of a given component may 

not always have the same name as the corresponding abstraction level in the 

bus definition. The naming convention helps to enforce a mapping of the 

abstraction levels between the component and the bus definition. For 

example, the abstraction of the timed transaction level could be named as 

“TLM-timed” in the bus definition while it could be named as “PVT” in the

component. 

2.3.2 View Specification

The view specification of a component with multiple abstraction levels

remains the same as the view specification of the single-view component.

The only difference is that meticulous care must be given to handle bus 

interfaces. In multiple-view components, certain bus interfaces may be

present in a particular view but absent in another view. A typical example of 

such is the test interface that exists at the RTL but not at the untimed TLM, 

as depicted in Figure 7-2. Note that this a distinct difference from the

SPIRIT V1.0 where all bus interfaces are defined for every component view.  

Figure 7-2. Bus Interfaces of a Component with Two Abstraction Levels 

To resolve such problems, each component view must include the list of 

bus interfaces available in a design. This feature facilitates the SPIRIT 

compliant tool to retrieve the available bus interfaces for each abstraction 

level of the component.

RTL Untimed
TLM



248 Chapter 8 7

Consider the example of a component with two abstraction levels, RTL

and untimed TLM, as illustrated in Figure 7-2. At the RTL level, the

component has two bus interfaces. The first is a STBus level-2 interface

while the second is a test interface. At the untimed TLM level, a STBus

level-2 interface is the only present interface. The corresponding XML code 

of this multiple-view component is provided hereafter. Note that 

busInterfaceNameRef refers to the name of the bus interfaces defined in the f

bus interface section of the component XML metadata file.

Example of the XML Code for a Multiple-View Component

<spirit:views> 

 <spirit:view> 

  <spirit:name>RTL</spirit:name>

  …

  <spirit:interfaceList>

   <spirit:busInterfaceRef>

    <spirit:name>STBus<spirit:name> 

    <spirit:busAbstraction>RTL</spirit:busAbstraction> 

   </spirit:busInterfaceRef>

   <spirit:busInterfaceRef>

    <spirit:name>test<spirit:name>

    <spirit:busAbstraction>RTL</spirit:busAbstraction> 

   </spirit:busInterfaceNameRef> 

  </spirit:interfaceList>

 </spirit:view> 

 <spirit:view> 

  <spirit:name>PV</spirit:name>

  …

  <spirit:interfaceList>

   <spirit:busInterfaceRef>

    <spirit:name>STBus<spirit:name> 

    <spirit:busAbstraction>PV</spirit:busAbstraction> 

   </spirit:busInterfaceRef>

  </spirit:interfaceList>

 </spirit:view> 

</spirit:views>

2.4 Design Structure 

In our context, a design is the representation of the top-level structure for 

a given SoC platform. A SPIRIT compliant design contains all of the

instances and connections that form a SoC.  

There are three compulsory sections of a SPIRIT compliant design:

1. VLNV of the top-level design; 

2. different component instances instantiated at the top-level;
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3. connections between component instances at the bus interface level

and point-to-point level.

Figure 7-3. A Design with Three Components 

Figure 7-3 demonstrates a simple design made of three components 

interconnected by:

a) bus interfaces from int1 to int2, and from int3 to int4; 

b) point-to-point connection between sig1 and sig2.

The corresponding XML description of this component is provided 

hereafter. The description starts with the VLNV of the design, giving

information on the design vendor, library, name, and version. The next 

section, <spirit: componentInstances>, lists all of the component instances.

Each of these instances holds an instance name and a reference to access the

component library identified by its VLNV. Following this is the section of 

<spirit: interconnections>, which provides the information on the

interconnections of bus interfaces. For every component involved in the

interconnection, there are two values required by this section: the name of 

the component instance and the name of the bus interface on that 

component. The last section, <spirit: adHocConnections>, gives the

specification of the point-to-point connections between signals.

Example of XML Design Representation

<spirit:design>

<spirit:vendor>ST</spirit:vendor>

<spirit:library>Example</spirit:library>

<spirit:name>simple_design<spirit:name> 

<spirit:version>1.0</spirit:design>

<spirit:componentInstances> 

  <spirit:componentInstance> 

   <spirit:name>component1</spirit:name>

   <spirit:componentRef spirit:vendor=“ST” spirit:library=“Processor” 

    spirit:name=“proc1”  spirit:version=“1.0”/>

  </spirit:componentInstance>

  <spirit:componentInstance> 
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   <spirit:componentRef spirit:vendor=“ST” spirit:library=“Bus”  

    spirit:name=“bus1”  spirit:version=“1.0”/>

  </spirit:componentInstance>

  <spirit:componentInstance> 

   <spirit:name>component3</spirit:name>

   <spirit:componentRef spirit:vendor=“ST” spirit:library=“Peripherals”

    spirit:name=“uart” spirit:version=“1.0”/> 

  </spirit:componentInstance>

</spirit:componentInstances>

<spirit:interconnections>

  <spirit:interconnection

   spirit:component1Ref=“component1” spirit:busInterface1Ref=“int1”  

   spirit:component2Ref=“component2” spirit:busInterface2Ref=“int2”/>

  <spirit:interconnection 

   spirit:component1Ref=“component2” spirit:busInterface1Ref=“int3”  

   spirit:component2Ref=“component3” spirit:busInterface2Ref=“int4”/>

</spirit:interconnections> 

<spirit:adHocConnections>

  <spirit:adHocConnection>

   <spirit:pinReference componentRef=“component1” spirit:signalRef=“sig1”/>

   <spirit:pinReference componentRef=“component3” spirit:signalRef=“sig2”/>

  <spirit:adHocConnection>

</spirit:adHocConnections>

</spirit:design> 

No information regarding the abstraction level of the design components 

is provided in the XML description. This aspect will be handled in a separate

file. One way to handle this is providing a default file that gives the

preferred list of view for each component instance. The tool will check 

through the default list for the first available view. Once found, that viewt

will be accepted by the tool. The default rule can be overwritten by another 

if the designer would like to change the selected view. This is quite a 

common routine in the design process where all of the components are 

initially at untimed TLM level, and then some components are gradually 

changed into RTL. Such manipulation continues until a complete RTL

platform is obtained at the end. 

Since no information is given for the abstraction level in the design, the

role of generators is vital. The netlister must verify the abstraction level for 

each component to assure the right connections. Two component interfaces

of the same abstraction level can obviously be connected directly. If their 

abstraction levels are different, the netlister will have to insert a transactor - 

or BFM - between the two interfaces. This is typically the case where a

component is of untimed TLM level while another is of RTL level. In such

cases, the role of the transactor will be converting transactions into signals.  

<spirit:name>component2</spirit:name> 
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3. AUTOMATION TOOLS 

3.1 The Need for Platform Assembly Automation  

The Integrated Circuits (IC) industry has been growing exponentially for 

a few decades. ICs are no more simple chips with a few components for a 

specific functionality but System-on-Chip (SoC) with multi-millions gates 

for a whole system. The current SoC industry must treat every step in the 

SoC design flow as much as possible at the platform level, where the system 

behavior is studied and managed through the communication between

platform IPs. 

Once a given SoC design is simulated at TLM level, it will have to go for 

the RTL simulation where all cycle-accurate signals must be connected. Not 

only is the RTL simulation a time- and effort-consuming job, it is also highly

error-prone.

Consequently, the need for the platform assembly automation has 

become more and more critical nowadays. The concept of using the data 

model in the platform assembly operation is relatively clear for its users. 

However, this concept is not really implemented in the industry today 

because the optimization of the high-level platform simulation does not 

allow treating such data models (which represent very often the transactions

between platform components).  

With the ever-rising SoC complexity, the need for automating the SoC

platform assembly should no longer be compensated by such optimization.

The most noticeable advantages include reduced error probability and 

immediate productivity enhancement. In addition, any modifications on an

existing platform description can save SoC developers a lot of time. The

SoC flow automation needs to tackle two areas: 

1. automation of standard tasks by using SPIRIT compliant generators; 

2. providing SPIRIT compliant tools for tasks that require user inputs.  

3.2 Foundation of Flow Automation

All kinds of industrial activities follow specific procedures that can be 

described as a flow. Without exception, the SoC industry must obey this rule

as well. Various methodologies were developed to assist SoC developers in

formalizing the SoC design flow. Formalizing the SoC design flow means

identifying tasks that can be fully automated and those that require user 

input.
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Note that the majority of the automated tasks can only be executed upon 

the input of the necessary information from users. To create such

formalization, two parts of the flow must be distinguished: 

1. Structural Part. This part consists of user-dependent data,

environment-dependent data, configuration parameters, data 

constraints, and any other data that are collected as input for a set of 

automation tools.

2. Functional Part. The functional part is the data treatment in a flow.

Both parts can be formalized into the format of Unified Modeling 

Language (UML), which is a methodology describing the flow of any 

activities.

Since long, there exists an absolute formalized data model in the algebra

called Relational Data Base (RDB). This universal data model is quite

simple but very efficient. Through a data model diagram, the RDB 

represents the formal structure and logical relation of the input data for a

given activity flow. Otherwise stated, the RDB describes and outlines the

structure of data.

Figure 7-4 illustrates an example of the data model with its data classes,

data fields, and the data hierarchy. This diagram is an interpretation of the 

SPIRIT data model that covers only the description of hardware connections.

It shows the non-exhaustive examples of data classes and data fields, and 

cardinal relations between the classes.  

There are loads of different methods to realize the diagram or schema of 

the RDB model. To design this schema, the data structure that will be

described by the RDB model must be carefully developed, including the

hierarchical and cardinal relation for the whole data structure.

Many commercial data model tools called database engines are available

in the market today. These tools access to the database through the standard 

request language, Simple Query Language (SQL).  However, these tools 

often require proprietary database engines to store data in the proprietary

binary format. These proprietary tools have consequently made SQL a non-

standard language without a universal format. 

For this reason, a descriptive language should be used to handle the 

structural part of a flow. The XML is strongly recommended as the best 

solution for this purpose since it can hold any formalized contents. The 

XML documents can be manipulated by using standard parsers and 

validators such as Xerces from W3C2. These parsers and validators check the

consistency of the described elements in the XML (like what an RDB engine 

2  Refer to World Wide Web Consortium (W3C) at http://www.w3.org.
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will do), e.g. checking the descriptions of platform design, components/IPs, 

and bus specifications/definitions.

Figure 7-4. Example of Data Model

Although the XML can handle data contents very well, the data structure 

must be described. Different methodologies are available to provide the 

technical support for describing data structures. Be it any method, a list of 

“containers” has to be designated to describe the data model. These 

containers are the data classes depicted in Figure 7-4; they are called table in

the RDB, class in the object-oriented language, and sequence in the XML 

Schema Definition3 (XSD). For each container, a set of data fields must be 

defined as depicted in Figure 7-4. These data fields are called column in the

RDB, member in the object-oriented language, and r element in the XSD.t

3  Recommended by W3C to formally describe the elements in the XML documents. 
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The real strength of a data structure descriptive tool lies in its ability to 

illustrate the relation between the container elements, rather than the 

description of the container itself. There are two fundamental types of such

relations distinguished by their cardinality: 

1. One-to-One Relation. A given data member can only be related to a

single data member from another data class, for example, a set of 

parameters added to a given class.

2. One-to-Many Relation. A given data member can be related to one or 

more data members from other data classes, for example, a

microelectronics component can hold several bus interfaces. 

The data model exists most of the time in an implicit form in many 

industrial activities. The explicit implementation of the data model, on the 

other hand, is able to offer very extensive applications ranging from 

assembly tools to generator tools. 

SPIRIT has adopted the XML format, a universal standard opened to the 

public, to describe a data model. As such, the XML specification cannot 

verify the relational and cardinal integrity of the data model described by the

XML documents. A list of semantics rules called “grammar” or “schema” 

must be implemented to further describe the data model. Certain specific 

languages can formalize the XML semantics rules; among which, the most 

advanced description methodology is the XSD. The XSD schema is however 

limited to describe all the necessary semantics rules. For this reason, there 

are two principal parts in the SPIRIT standard: 

1. XSD schema for describing the technical content; 

2. User guide for describing the semantics rules and the design

automation flow. 

3.3 Strategy for Automation Tool Development 

This section discusses the strategy adopted for developing the automation 

tool in line with the SPIRIT standard. 

3.3.1 SPIRIT Meta-Level Description 

Be it any methodology or description language of data model, the 

structure of the data model, i.e. the data classes, data fields, and the relation 

between data classes, must be described by formal rules. These rules are 

meta-level rules since they implement the “data model” of a data model, i.e.l

meta data model.

All of the description methodologies provide the syntax to create and 

update the meta-level description. In the SPIRIT standard, the meta-level
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descriptions for XML documents are implemented in XSD schema. The

semantics rules in charge of validating the meta-level description itself are 

usually hard-coded in the database engine, for instance, hard-coded in 

Xerces for the XSD schema. 

Figure 7-5. Description of Generic Meta Data Model 

Figure 7-5 gives a description of the generic data model at meta-level.

Note that in a SPIRIT meta data model, a list of data classes (also known as 

table or sequence) must be defined. Every defined data class holds a list of 

members (also known as element or column) with a unique type each. The 

cardinal relation between the members can be described as well. 

3.3.2 SPIRIT Content-Level Description

Once the SPIRIT meta data model is implemented, its structure must be

filled up with the necessary contents4. The SPIRIT XML documents are 

created to store the database of such contents.

An important goal of the SPIRIT platform description is to provide an

input for a set of tools such as generators. Various Application-Programming

Interfaces (API) can be used to implement the SPIRIT compliant tools. For 

any kinds of API as C++ or Java, the data must be treated first. To do so, the

API must contain a list of methods to create, modify, and delete the SPIRIT 

objects such as bus interfaces.

4  See section 3.4.2 about the editor tools for editing the contents.  
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The W3C consortium provides a specific API, Xerces, which is divided 

into two main parts:

1. Validator and Parser: parse XML documents and then load the XSD 

schema; also check the content integrity of XML documents, and fill

a proprietary Xerces structure if the integrity is well respected. 

2. Document Object Model (DOM): a low-level API.

The DOM API provides very generic structures in the form of a simple 

data tree. It also provides methods to manage the data tree, i.e. methods to 

access the SPIRIT contents through the software. However, the DOM API

does not take into account the XSD schema and thus not allowing efficient 

programming of SPIRIT compliant tools. A higher layer dedicated to the

SPIRIT schema is therefore required as explained in the next section.

3.3.3 API Generation 

As explained earlier, a higher layer API is necessary to handle the 

SPIRIT schema or the meta data model. A standard approach to produce this 

layer is writing it manually in an appropriate programming language such as

C++ or Java. This manual task is always a very time- and effort-consuming

job due to the huge schema size. 

A more interesting approach is to make use of the SPIRIT schema to 

generate the SPIRIT-specific API structures, and their exhaustive access 

methods to the entire content described by the XSD schema. This approach 

is feasible because the meta-level description is formalized in the XSD 

schema, which is indeed a kind of XML documents. The standard DOM API

allows loading the XSD schema for filling up the corresponding meta data 

models in the form of C++ meta structures. Essentially, such C++ structures 

are filled in the memory after being analyzed by the model builder tool as

the representation of the SPIRIT meta data model. 

Once this abstract representation is available, the different applications 

can be generated, e.g. all the translation tools from/to the SPIRIT XML 

format. The most important generation is the SPIRIT API source code,

which represents a “snapshot” of a given SPIRIT version. This allows an 

automatic re-generation of API source code if the SPIRIT version is updated 

or when proprietary schema extensions are implemented. The choice of the

target language for the generated API is independent of the language of the 

generator itself; thus, it can be in any language such as C++ or Java5.

5  For the future version of SPIRIT platforms, such generations are in C++ for simulation 

compliance reasons. 
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With this generated API, SoC developers will no longer have to deal with

a generic data tree structure based upon DOM but concrete SPIRIT

compliant objects such as components and bus interfaces. All of the

elements of the SPIRIT schema such as signal direction or signal size will be

created explicitly during the API generation as the class members. These 

data members can be manipulated explicitly by the SPIRIT developer. 

The dedicated C++ structures with access methods to the members are

not the only necessary targets. The generated API must provide the methods 

to instantiate, update, duplicate, and remove SPIRIT objects. However, a 

further need is an immediate method to load the XML document into the 

C++ structure, and to dump this structure in a new XML document after 

modification. This is where a loader and a dumper are required. Figure 7-6

and 7-7 summarize the discussion of the previous three sub-sections. 

Figure 7-6. SPIRIT Meta-Level

SPIRIT Schema
(Structure)

Schema Editor
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Figure 7-7. SPIRIT Content-Level 

3.3.4 Development Environment and Inter-operability

The SPIRIT development environment is the “meta-level environment” 

for the SoC design environment, which is indeed analogous to the 

relationship between meta-level and content-level SPIRIT data models. The

development environment provides SoC developers with the necessary tools 

and facilities to create a user-specific design environment.

To optimize the work of SPIRIT developers, a full SPIRIT development 

environment including the generated API should be made available. The 

generated API is nevertheless an exhaustive C++ view of SPIRIT schema 

without the semantics rules. As mentioned earlier, the SPIRIT semantics

rules are collected in the SPIRIT user guide. To enable verifying these rules 

throughout the development, a higher API layer must be implemented

manually6.

This higher API facilitates the writing rules by encapsulating the low-

level methods to complement the work of the generated API. Furthermore, 

this layer separates the generated API from the tools developed by SPIRIT 

developers, i.e. SPIRIT tools are independent of the generated API. As the

SPIRIT version evolves, tool developers simply need to re-generate the API 

for the XSD schema and update the API for the semantics rules while the

SPIRIT tools themselves are kept untouched.  

Another fundamental goal of SPIRIT is to provide a tangible solution of 

flexible inter-operability among different tools provided by different EDA 

vendors or IP providers. SPIRIT describes the generators of the SoC design

flow with standard interfaces at every flow step. The SPIRIT development 

6  STMicroelectronics has developed a checker tool to verify the SPIRIT semantics rules 

(see section 3.4.4). 
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environment contains various “building bricks” such as Loose Generator 

Interface (LGI) and Loose Generator Change (LGC) (see section 3.4.5), 

which allow end users to swap from one SPIRIT compliant tool to another at 

any step throughout the flow.  

3.4 SPIRIT Compliant Automation Tools 

At the entry point of the SPIRIT design flow, the data required in the 

flow activities must first be imported either manually or automatically by

some scripts or tools. Once entered in the SPIRIT environment, the imported 

data will be typed or edited by specific editors. The SPIRIT compliant 

automation tools will then treat the data in line with the objective of end 

users, which is the SoC design simulation for SoC developers.  

The SPIRIT compliant automation tools are classified into five families:

1. Packager.

2. Editor.

3. Checker.

4. Configurator. 

5. Generator.

3.4.1 Packager

Automated processes require the input data to be packaged or put 

together according to the technical specification. The SPIRIT compliant 

packager is an automation tool for packing all the input data into the XML r

description of microelectronics components.

If the input data exists already in a specific formal format such as

FrameMaker, RTL or SystemC, a set of scripts are provided to translate such 

data into a SPIRIT XML document. 

3.4.2 Editor

Once the imported data is translated into the XML format by the SPIRIT 

compliant packager, the design description requires some meta data that is

necessary to enable the design configuration and automation. Such meta data

is usually prepared and entered manually by SoC developers. For this 

reason, an editor is needed in the flow to edit and modify the SPIRIT XML 

database.

As an ASCI format, the XML document allows any text editors to

process and package a component description. The end users, however,

expect something more user-friendly than the XML format such as an editor 

with a Graphical User Interface (GUI).  
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Two types of GUI editors are available: 

1. XML Generic Editor. An editor that edits and modifies the XML

documents based on any XSD grammar, e.g. SPY. 

2. SPIRIT-Specific Editor. A specific editor that respects the SPIRIT

grammar and schema. The XSD methodology adopted by SPIRIT is 

consistent enough to provide automatic ways to create GUI for XML

packaging. This is a tool generation that is similar to the API 

generation from the same representation of the SPIRIT meta data 

model (see section 3.3.3). The most important packaging parts, 

however, remain the manual optimization process.     

The result of an editor is an XML document for all of the components of 

a design. A particular tool is needed to assemble all of these components and 

interconnect them to form a design or platform. Therefore, a specific editor, 

platform assembler, is created to perform this job. 

The platform assembler can be in the form of GUI where users can select 

any components to instantiate in the platform, interconnect bus interfaces, 

and connect signals not belonging to any bus by ad hoc connections. In

addition, the assembler tool also configures the parameters of the component 

instances. The result of the platform assembler is a new XML document file 

for the design, i.e. Design XML file. 

3.4.3 Checker 

The SPIRIT compliant checker is a specific tool developed for verifying

the semantics rules written in the SPIRIT user guide.

The SPIRIT schema allows checking many integrity constraints in a

design description. However, certain description methodologies cannot 

check all of the constraints needed to verify a design description. 

Therefore, an applicative layer called checker is added on Xerces, ther

standard XML validator. This layer implements the semantics rules for the

SPIRIT schema and the reference validity for elements from different files.  

The latter task cannot be performed by the XSD since it can only treat a 

single file at a time. As an example, the checker must be used to verify the 

names of the components instantiated in a design because all of the 

components have their own separate XML documents. The checker can be

invoked anytime at any step in the design flow.

3.4.4 Configurator

The SPIRIT compliant configurator is a tool that configures the SPIRIT 

data according to the design context. This configuration is based on either: 

1. a template, e.g. configuration for replicating interfaces;
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2. or the user input in line with the design context.

Just like the checker, the configurator can be invoked can be called 

repeatedly after any iteration from the Design XML. 

Indeed, the configurator is an XML-to-XML tool. Given the SPIRIT

input as an XML document, it is configured by the SPIRIT configurator to 

produce a SPIRIT output that is another XML document but with some 

modifications or configurations. 

3.4.5 Generator 

The SPIRIT compliant generator is a very important tool family. In the

design flow, several generators can appear together as a generator chain

with each targeting a specific task. For the SoC design flow, the key

generator is of course the netlister (see section 3.5 for further discussions).

Typically, a generator reads a complete SPIRIT design description as the 

input data in the XML format. A generator chain is then created for that 

design. Each generator of the generator chain, for the reason of inter-

operability, contains three elements of SPIRIT compliant generators: 

1. Loose Generator Interface (LGI).

This sub-generator takes the design environment as the input to create

an LGI file, which holds the access path to all of the XML documents 

of the design environment. It helps to implement a generator tool that 

is independent of the design environment, i.e. only the LGI will have

to be modified if the access path to an XML file is changed. 

2. Function-Specific Generator.

This is a generator with specific tasks, e.g. the netlister to produce a

netlist.

3. Loose Generator Change (LGC).

If any function-specific sub-generators make some changes in XML

documents, then the LGC must write these changes into an LGC file

to update the design environment.

Indeed, the generator chain is described in the XML format as a “meta-

generator” that permits the SPIRIT compliant tools to perform the entire 

generation flow from the design description in a single shot. The meta-

generator generates all of the necessary output of the design (e.g. netlist), 

which will be utilized by the simulation tool such as the SystemC-RTL 

simulator. 

3.5 Netlister

The netlister is a particular type of generator tool that plays a vital role in 

the SPIRIT SoC automation flow. Recall that the main objective of the
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SPIRIT standard is to automate the SoC design flow from the XML design 

description to an operational simulation or implementation. The netlister can 

therefore be considered as the most important automation tool.  

The standard input for the SoC simulation are formal sources as RTL or 

SystemC, which can be compiled and executed by a simulation kernel. Be it 

any level of abstraction, a top netlist is required to perform the platform

simulation, e.g. an RTL/TLM top netlist is necessary for simulating a mixed 

RTL/TLM design. The netlist is a purely structural description that is 

essentially a list of component instances with interconnections between their 

interfaces. Note that no algorithmic or behavioral codes should be included 

in a netlist.

For any given platform, either an RTL or SystemC netlist is required for 

its simulation. Thus, two types of netlisters are available in general: 

1. RTL netlister to generate the RTL netlist; 

2. SystemC netlister to generate the SystemC netlist (for TLM). 

3.5.1 Co-Simulation Netlist 

The co-simulation is typically a simulation that mixes both TLM and 

RTL models. It is needed for simulating a complex RTL design with a huge

number of elements to support high-level functionalities. Recall that this is

indeed the reason of developing the TLM methodology to represent the

behavior of an RTL design with only the algorithm using a system-level 

language.

The users will construct a mixed test-bench by choosing the appropriate 

IPs to be simulated at RTL as the Design Under Test (DUT), and those to be 

simulated at TLM for its behavior from the system point of view. Once the 

choices are made, the netlister tool will provide the corresponding netlist 

automatically. 

3.5.2 Co-Emulation Netlist

To increase the execution speed of a simulation, certain synthesizable 

RTL blocks can be mapped on emulators. A different netlist than the co-

simulation netlist must be generated by the netlister tool.   

3.6 Other Generators 

Many other kinds of generators can be created according to what the

users need to do. The only condition to create a generator is that the

necessary information must be written in the XML document.  
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3.6.1 Regression Generator

Many of the SoC platform IPs especially the host processor need to 

execute the embedded software. The role and the amount of the software has 

become increasingly significant in the SoC design. Therefore, it is very 

useful to describe a list of test codes to execute an IP for a full regression

test. Such description can be written in an XML document, based on which

the regression test suite can be generated. 

3.6.2 Register Access Test Generator 

In the SPIRIT schema, the memory map of an IP can be described with 

the accurate descriptions of all of its registers and register fields. Specific

generators can generate the SystemC header files for the IP, which contains 

the definitions of all registers. These generators can also generate the 

software that will be executed on the simulation platform. This software will 

try to access the IP registers to verify if the access rules are well respected.  

4. EXAMPLE

4.1 Platform Architecture 

The TC4SoC7 platform serves as a demonstrator to validate the design 

automation strategy described earlier on a real platform. TC4SoC is a test

chip vehicle that validates several IP blocks and CAD tools in 90nm CMOS

technology. It is a SoC design comprising PCI and LMI interfaces. It 

provides the STBus External Port (SEP) that enables the interconnection to

external high-speed buses. This chip supports flash memories and a board 

range of peripherals connected via a programmable glue logic. Other 

memories included are embedded ROM, SRAM, and eDRAM. IPs are

interconnected through the STBus interconnect, which contains four STBus 

nodes as transaction routers. Figure 7-8 illustrates the structure of TC4SoC.  

7  A SoC design developed by STMicroelectronics. 
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Figure 7-8. The Architecture of TC4SoC Platform

4.2 IP Packaging and Platform Generation110 

This section describes the IP packaging and the platform generation

following the SPIRIT strategy. The UART IP in the TC4SoC platform will

be given as an example of the SPIRIT compliant component.  

To begin with, a SPIRIT component file must be created for the UART. 

The RTL entity (VHDL in this example) of the UART is used as the entry

point to create this component file. The signal section under the hwModel

section of the component file corresponds to the signal list of the RTL entity.

This mapping can be done manually or automatically by a tool, vhdl2spirit.

If signals are correctly named in the RTL entity, for instance, giving the 

same prefix to a group of signals belonging to the same bus interface and 

using the standard names to indicate bus types, then the vhdl2spirit tool ist

able to detect bus interface type and create the busInterface section with the

corresponding signal mapping. 

As depicted in Figure 7-9, the example of UART component has three

bus interfaces, i.e. a slave STBus T1 interface, an input clock interface, and 

an input reset interface. There are three types of STBus signals: T1, T2, and 

T3. Since the STBus interface used in the UART is only T1, all of the 

STBus signals are prefixed with stbus1 in the UART VHDL entity. As a

result, the vhdl2spirit tool can detect correctly the STBus interface. Thet

script can also detect automatically that the interface is T1 since T2/T3

signals are missing.

After instantiating all the design IPs, users are now ready to connect them 

to the STBus interconnect. The STBus interconnect is a standard yet fully 

configurable IP. For instance, the number of bus interfaces is not static as it

depends on the number of IPs connected to it. It is therefore impractical to

store all of the possible interconnections in a database.
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The XML database contains a template of the STBus interconnect. This

template is processed by a style sheet in the eXtensible Stylesheet Language 

(XSL) to generate an XML file with the appropriate number of bus

interfaces.

Figure 7-9. Bus Interfaces of UART in TC4SoC Platform 

The remaining tasks include the configuration of signal size and the pin

connection between master and slave interfaces, which are performed by a 

SPIRIT generator. First, the SPIRIT design environment generates a Loose

Generator Interface (LGI) file that describes the environment. This file is

indeed the input file to help the generator to locate the paths to different 

XML files.

When the design and all component instances are loaded, the

configuration generator will search for the STBus interconnect instances. 

Once the interconnect instances are identified, the configuration generator 

will loop through the STBus interfaces of these instances. For each interface,

the generator will try to match its signal sizes to the connecting interface 

with respect to the STBus specification. Once matched, the interfaces are 

interconnected. When the interconnection task is completed, the generator 

will check and remove any unused signals in the STBus interfaces. A new 

XML file is then generated with the information of the new path for the 

interconnections. This file is passed to the netlister in the form of the Loose

Generator Change (LGC) file. 

Tasks accomplished up to this point include the platform configuration,

the IP configuration, and the connections of the design-level bus interfaces. 

The netlister tool can now perform its job with all the available information 

to generate a top-level RTL netlist of the TC4SoC platform for simulation. 

Figure 7-10 shows the SPIRIT design automation flow. 
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Figure 7-10. SPIRIT Design Automation Flow
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